US009270845B2

a2z United States Patent (10) Patent No.: US 9,270,845 B2
Abe (45) Date of Patent: Feb. 23, 2016
(54) INFORMATION PROCESSING APPARATUS, (56) References Cited

INFORMATION PROCESSING METHOD,
AND PROGRAM

(75) Inventor: Koichi Abe, Yokohama (JP)

(73) Assignee: CANON KABUSHIKI KAISHA,
Tokyo (JP)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 807 days.

(*) Notice:

(21) Appl. No.: 12/870,217

(22) Filed: Aug. 27,2010
(65) Prior Publication Data
US 2011/0051190 A1 Mar. 3, 2011
(30) Foreign Application Priority Data

Sep.1,2009 (IP)
Dec. 16,2009 (IP)

2009-201853
2009-285354

(51) Int.CL
GOGF 3/12 (2006.01)
HO4N 1/00 (2006.01)
GOGF 13/12 (2006.01)
(52) US.CL

CPC ... HO4N 1/00204 (2013.01); HO4N 1/00244
(2013.01); HO4N 1/00427 (2013.01); HO4N
1/00464 (2013.01); HO4N 1/00474 (2013.01);
HO4N 1/00482 (2013.01); HO4N 1/00503
(2013.01); HO4N 1/00962 (2013.01); HO4N
2201/0039 (2013.01); HO4N 2201/0094
(2013.01)
(58) Field of Classification Search
None
See application file for complete search history.

U.S. PATENT DOCUMENTS

7,106,472 B2* 9/2006 Gomezetal. 358/1.15

2004/0136023 Al* 7/2004 Sato 358/1.13
2005/0267797 Al* 12/2005 Takahashietal. 705/11
2005/0270551 Al* 12/2005 Choi 358/1.13
2007/0268517 Al* 11/2007 Koarai ..o 358/1.15

FOREIGN PATENT DOCUMENTS

CN 1704893 A 12/2005
JP 2005-085132 A 3/2005
OTHER PUBLICATIONS

Office Action issued on May 17, 2013 in counterpart Chinese Appli-
cation No. 201010272043.7.

* cited by examiner

Primary Examiner — Ashish K Thomas

Assistant Examiner — Neil R McLean

(74) Attorney, Agent, or Firm — Carter, Del.uca, Farrell &
Schmidt, LLP

(57) ABSTRACT

An apparatus includes a management unit configured to man-
age a device that provides a plurality of functions, and a
utilization unit configured to utilize one function among the
plurality of functions. In the apparatus, the management unit
confirms whether a function different from the one function,
among the plurality of functions, is available according to
management and control data that includes information for
constructing a management screen, which management
screen being a screen configured to manage the device, and a
setting unit sets an argument to an object indicating a link to
theutilization unit according to a result of the confirmation. In
the apparatus, the utilization unit is configured, if the object,
which is displayed on the management screen, is designated,
to set the device according to the argument.

12 Claims, 26 Drawing Sheets

2
PC (Server)

Web Server
11

5
[

? Network

Customer

7
lsl Network

| 1
PC

80

142

141

TWAIN Driver

usB
MFP
e rar
3

»

CD-ROM
10
O~z

U.S. Patent Feb. 23, 2016

Sheet 1 of 26 US 9,270,845 B2

—2
PC (Server)
—9
Web Server
| ~11
8 Network
Internet
Customer
MFP ~7
4 Network
—1
PC USB
Device Management 14 {
—142 3
TWAIN Application
~—141 CD-ROM 10
TWAIN Driver DM12

U.S. Patent Feb. 23,2016 Sheet 2 of 26 US 9,270,845 B2
—201 202 203
RAM HDD KBD
—206
—204 207 —205
CPU NB LCD
—3
CPU ~—15
~—16 1 ~—18
- e | COMMUNICATION
ROM - ah - UNIT
- p .| RECORDING
RAM ~ ah > UNIT
OPERATION |, e . DISPLAY
UNIT UNIT
READING - e .| FACSIMILE

UNIT CONTROL UNIT

—24

EXTERNAL
STORAGE |« -
CONTROL UNIT I

U.S. Patent Feb. 23,2016 Sheet 3 of 26 US 9,270,845 B2
1
|
PC
—82
Applications
—30 ~—80
Print Application Device Management
142 —143
- TWAIN Application WIA Application
API/DDI 84
Device Drivers 85
Network 87 [
88—~ Plug and Play — i
(N-PnP) Drivers | | {HY Brivais
90— WSD IHV Native Protocol —89
IP Network ~—91
Ethernet —~—92

-+« MODULE SUPPLIED TO OS AS STANDARD

| ... MODULE MANUFACTURED BY IHV

US 9,270,845 B2

Sheet 4 of 26

FIG.4

Feb. 23, 2016

_1 llllllllllll 1 _| III |
: P |
P M Lo E “
P <=l 8 [8 "
Ll & | L3 m
" vy o " P
¥ ' 1 cr i __
' v =0 © X N o) e
" -] S>> X ™ _ ™ ™!
I D! m.__n ™ 1 _"
1 ;o O] o ! H
" " ! gr 1 = P _"
! P €2 | | 2 20 |
0 f 1 . u-I l' | > . sv __
jmm - 1 ! Al [» gn o [o N = - h.l by
§ 1 “43 o [no “ oo Cm "_
” oy sl &= | = X
.0 1 ! [0 1 ! A | ! by
' c ot . P! o) 1 by
Ol s | el 3] -) “ il
"ﬂ =} Yoy (o] o ' cw 1 0
: «Q P ol = || =™ =8 ' "
: m 1 ” o ..n_lw 1 " Po y " "_
: o0 B wlell = !)
A - e I — 05 | 'S ¥
B Il b S8 | T 3
¥ = 1 i ! 9(\1 tn 1
i .m ! 1 “ % ™ mo 1
N I Lo n=s "
- - 5!
" ! | 22!
| D = =
))] Lo n0Q
.O 1 .O !

III

U.S. Patent

50

U.S. Patent

Feb. 23, 2016 Sheet 5 of 26

FIG.5A

5(80

Devices and Printers

+----503

ABC Kmmn:

....... 4

. I
‘c’_-.l.'-. !
(| I
' 1

' 1

- 1

1

1

XYZ Defg

FIG.5B

6?0

US 9,270,845 B2

~—601

6(3)2
ABC Kmmn

6(S)3
ABC

)
I:I Open Printer Queue

604

|:| Image Scsan (WIA)

[:] PrintingSPreferences

610

[] Image Scsan (TWAIN)

U.S. Patent Feb. 23,2016 Sheet 6 of 26 US 9,270,845 B2

FIG.6A

6/20 6{24
New Scan \ X
Scanner: ABC Kmmé (WIA) [Change... l]
Profile: { Photo (Default) v |
Paper size: [Letter v |
Color format: | Color v | ~143
File type: JPG (JPEG image) v |
Resolution (DPI): {300 AV |
| Preview || Seam || Cancel |

FIG.6B

6/21
TWAIN Application \ X
Scanner: { ABC Kmmn (TWAIN) lv]
Profile: { Photo (Default) VY |
Paper size: { Letter v |
Color format: | Color v | ~142
File type: { JPG (JPEG image) vy |
Resolution (DPI): [300 AV |
| Prevew || San || Cancel |

U.S. Patent Feb. 23,2016 Sheet 7 of 26 US 9,270,845 B2

FIG.6C FIG.6D

Select Device [% Select Device | x
Choose a scanner ~623 Choose a scanner —~626
| ABC Kmmn(WIA) | ABC Kmmn (TWAIN)
ABC Kmmn WSD (WIA) ABC Kmmn (TWAIN) WSD
XYZ Defg (WIA) | ABC Kmmn (TWAIN) Network |
I 0K [l Cancel | | 0K 627

))
622 625

U.S. Patent Feb. 23,2016 Sheet 8 of 26 US 9,270,845 B2

, FIG.7A
S

PC 143

WIA Application
~—702

STI/WIA Service
~—703 704
Standard WIA Driver
/——'705

Kernel I/O Driver

FIG.7B

.

~—707

~—705

Kernel I/O Driver

--- MODULE SUPPLIED TO OS AS STANDARD

... MODULE MANUFACTURED BY IHV

U.S. Patent Feb. 23,2016 Sheet 9 of 26 US 9,270,845 B2

FIG.8 800
<hxml version="1.0" encoding="utf-8"?>

</dm:deviceManagement xmins:dm="http:/abc.xxx/dm/control">
<dm:manufacturer>ABC</dm:manufacturer> ~— 80 1
<dm:model>Kmmn</dm:model>—~802
<dm:functions>—~-803
<dm:function> ~—804
<dm:name xml:lang="en-US">Open Printer Queue</dm:name> ~— 805
<dm:execute>openPrinterQueue</dm:execute> ~—806
</dm:function>
<dm:function> ~—839
<dm:name xml:lang="en-US">Printing Preferences</dm:name> ~—807
<dm:execute>printingPreferences</dm:execute>~ 808
</dm:function>
<dm:function> ~—840
<! CASE WHERE IMAGE CAN BE READ VIA USB BY USING
WIA DRIVER OR VIA NETWORK CONNECTION BY WSD ->
<dm:name xml:lang="en-US">Image Scan (WIA)</dm:name>—~—809
<dm:required>—~—870
<dm:device>scanner</dm:device> ~— 877
<dm:available>true</dm:available> ~—8 12
</dm:required>
<dm:execute>wiaScan</dm:execute> ~—8713
</dm:function>
<dm:functions—~—84 1
<!-- CASE WHERE IMAGE CAN BE READ BY TWAIN DRIVER VIA USB CONNECTION -->
<dm:name xml:lang="en-US">Image Scan (TWAIN)</dm:name>~—874
<dm:required> ~—845
<«dm:device>storage</dm:device> ~—8715
<dm:available>true</dm:availables ~—8 716
<fdm:required>
<dm:execute>TWAINScan.exe" ABC Kmmn (TWAIN)" fdevmng</dm:execute>~—877
</dm:function>
<dm:function> ~842
<!~ CASE WHERE IMAGE CANNOQT BE READ BY TWAIN DRIVER VIA USB CONNECTION ->
<dm:name xml:lang="en-US">Image Scan (TWAIN) - Select Device</dm:name> ~—8718
<dm:required> ~—846
<dm:device>storage</dm:device> ~—8719
<dm:available>false</dm:availables ~—820
</dm:required>
<dm:execute>TWAINScan.exe" " /devmng</dm:execute>—8271
</dm:function>
<dm:function> ~—843
<!-- CASE WHERE IMAGE CAN BE READ BY TWAIN DRIVER VIA WSD NETWORK CONNECTION BY ->
<dm:name xml:lang="en-US">Image Scan (TWAIN)</dm:name>~—822
<dm:required> ~—84 7
<dm:device>printer</dm:device> ~—823
<dm:available>true</dm:availables ~—824
<dm:port>WSD</dm:ports ~ 825
<ldm:required>
<dm:execute>TWAINScan.exe" ABC Kmmn (TWAIN) WSD" [devmng</dm:execute>~—— 826
</dm:function>

U.S. Patent Feb. 23,2016 Sheet 10 of 26 US 9,270,845 B2

FIG.9

8?0

<dm:functions ~— 844

<}-- CASE WHERE IMAGE CAN BE READ BY TWAIN DRIVER VIA CONNECTION BY
[HV NATIVE PROTOCOL ->

<dm:name xml:lang="en-US">Image Scan (TWAIN)</dm:name> ~—827

<dm:required>—~—-848
<dm:device>printer</dm:device> ~— 828
<dm:available>true</dm:available>~829
<dm:port invert="yes">LPT</dm:port>~ 830
<dm:port invert="yes">COM</dm:port ~—83 1
<dm:port invert="yes">FILE</dm:ports— 832
<dm:port invert="yes">R</dm:port>~— 833
<dm:port invert="yes">XPS</dm:port>~— 834
<dm:port invert="yes">BTH</dm:por — 835
<dm:port invert="yes">USB</dm:port> — 836
<dm:port invert="yes">WSD</dm:por>~—83 7

</dm:required>

<dm:execute>TWAINScan.exe" ABC Kmmn (TWAIN) Network" /devmng</dm:execute>—~—838

<ldm:function>
</dm:functions>
<ldm:deviceManagement>

US 9,270,845 B2

Sheet 11 of 26

Feb. 23, 2016

U.S. Patent

1INN LINN
NOILISINDOV TOHLNOD
SALVLS HNIAVIY
0L6— 606— &
Y
LINN ONILLIS LINN
30IA3d 1OHLNOD
17NV33ad |«—= NOILVOITddY
506— 206— &
Y
NOILYRINIELG
906~ """304N0OS
NOILVAILDV

uonedlddy NIVML

—
LINN 3DVHOLS
3714 TJOHINOD
ANV
INIWIOVNVYIN
30IA3a
<
1INN DNIQV3Y
JIIH 3114 TOHINOD
06 ANV
ININIOVYNYIN
39IA3A
r06— 0
LINN LINN .%_apzoo
zo_wnw_m_xm_ =™ LNIWIDVYNYIN
39I1A3a
£06— c06—’ 0
| 1Nn
106~ Avidsia

juswabeuepy adi1nag

)
4!

01OId

)
08

U.S. Patent Feb. 23,2016 Sheet 12 of 26 US 9,270,845 B2
(CONNECT DEVICE)xS 1301
ACQUIRE DEVICEID |—S1302
S$1303
HAS
DRIVER BEEN YES
INSTALLED?
INSTALL DRIVER —~—S51304
LOAD DRIVER —~—S1305
S1306

HAS DEVICE
MANAGEMENT AND
CONTROL FILE BEEN
INSTALLED?

YES

INSTALL DEVICE
MANAGEMENT
AND CONTROL FILE

—~—S1307

r

ACTIVATE DEVICE

—S1308

MANAGEMENT SCREEN

(EItD)—~S1309

U.S. Patent

Feb. 23, 2016 Sheet 13 of 26

FIG.12

INSTALL DEVICE 51401
MANAGEMENT AND
CONTROL FILE

US 9,270,845 B2

VERIFY DEVICEID |—S7402
SEARCH FOR s
CONTROL FILE 51403
HAS NO
CONTROL FILE BEEN
EXTRACTED?

STORE CONTROL FILE |—S71405
INSTALL CONTROL FILE |—S1406

(Ei:D)\81407

U.S. Patent

Feb. 23, 2016

FIG.13

Sheet 14 of 26

US 9,270,845 B2

ACTIVATE DEVICE
MANAGEMENT 51501
SCREEN

Y

ACQUIRE
DEVICE NAME

—S1502

Y

LOAD CONTROL FILE

—~—S1503

Y

CONSTRUCT CONTENT TO
BE DISPLAYED ON DEVICE
MANAGEMENT SCREEN

—~—S1504

Y

DISPLAY DEVICE
MANAGEMENT SCREEN

—~S1505

C EilD >'¥S1506

U.S. Patent Feb. 23, 2016

Sheet 15 of 26 US 9,270,845 B2

FIG.14

CONSTRUCT CONTENT TO BE DISPLAYED
(ON DEVICE MANAGEMENT SCREEN)”3 1201

v

I CONSTRUCT PRINTER QUEUE BUTTON

Y
I CONSTRUCT PRINT SETTING BUTTON

~S1202

51203

| CONNECT SCANNER AND VERIFY INSTALLATION STATUS [~—S 1204

DRIVER BEEN CONNECTED
AND INSTALLED?

YES ,—S1206
[CONSTRUCT IMAGE READING (WIA) BUTTON |

il

\ —S51207

VERIFY STORAGE CONNECTION STATUS
AND DRIVER INSTALLATION STATUS

S1208

HAVE MFP AND

DRIVER BEEN CONNECTED NO

AND INSTALLED?

YES —S1209

CONSTRUCT IMAGE READING (l_TWAIN)
BUTTON FOR USB CONNECTION

51210

Y

DISPLAY SCANNER SELECTION DIALOG AND
CONSTRUCT IMAGE READING _[(TWAINLBUTTON
FOR CONNECTION SELECTED BY USER

v —S1211

VERIFY PRINTER CONNECTION STATUS
AND DRIVER INSTALLATION STATUS

S1212

HAVE MFP AND
DRIVER BEEN CONNECTED
AND INSTALLED?

YES —S1213

CONSTRUCT IMAGE READING TWAINZ BUTTON
FOR CONNECTION VIA NETWORK (WSD)

Y —S1214

VERIFY PRINTER CONNECTION STATUS
AND DRIVER INSTALLATION STATUS

S1215

HAVE MFP AND
DRIVER BEEN CONNECTED
AND INSTALLED?

YES —S1216

CONSTRUCT IMAGE READING ’\‘TWAIN)
BUTTON FOR CONNECTION VIA
NETWORK (IHV NATIVE PROTOCOL)

el

Y

(e y—S1217

U.S. Patent

Feb. 23, 2016 Sheet 16 of 26 US 9,270,845 B2
ACTIVATE TWAIN
(APPLICATION >S1 101
Y
ACQUIRE INFORMATION _ | o110
ABOUT DESIGNATED DEVICE
S1103
HAS
DEVICE BEEN NO
DESIGNW l 1108
ACQUIRE ACTIVATION
YES SOURCE INFORMATION
S S1106
ACTIVATION
= e < AR
Y S1111

I
DESIGNATED
DEVICE AN UNKNOWN
DEVICE?

YES 351712

DISPLAY SCANNER
SELECTION DIALOG

"W —S1104

SET DESIGNATED DEVICE
AS DEFAULT DEVICE

SCREEN?

~—S1107

ACQUIRE DEFAULT
DEVICE INFORMATION
INCLUDED IN OS

Y —S1108

SET DEVICE '(JDRIVER
NAME AS DEFAULT DEVICE
ACCORDING TO DEFAULT
DEVICE INFORMATION
INCLUDED IN OS

v

DISPLAY TWAIN
APPLICATION

U.S. Patent Feb. 23,2016 Sheet 17 of 26 US 9,270,845 B2

FIG.16A

1770
S
6(3)2 6(3)3
—607 ABC'Kmmn ABC
6(3)4 605
|:| Open Printer Queue [:] PrintingsPreferences
1 7380
|:| On-screen Manual

FIG.16B

On-screen Manual [%
ABC Kmmn
On-screen Manual

User's Guide
Printer Driver Guide ~1771
TWAIN Driver Guide

Photo Application Guide

U.S. Patent Feb. 23,2016 Sheet 18 of 26 US 9,270,845 B2

FIG.17

17300

<xml version="1.0" encoding="utf-8"?>
</dm:deviceManagement xmins:dm="http:/fabc.xxx/dm/control">
<dm:manufacturer>ABC</dm:manufacturer> ~—80 1
<dm:model>Kmmn</dm:model> ~—802
<dm:functions>—~— 17871
<dm:function> + + + </dm:functions—~ 804
<dm:function> - - - </dm:function>~—839
<dm:function> ~— 1701
<dm:name xml:lang="en-US">0On-screen Manual</dm:name>—~— 7 702
<dm:required> ~— 7 703
<dm:KeywordinRegistry key="HKLM¥SOFTWARE¥ABC¥ABC Kmmn" name="manual_path">
A¥Program Files¥ABC¥ABC Kmmn¥English¥Manual.chm
</dm:KeywordinRegistry>~ 1 704
</dmirequired>
<dm:execute>A:¥Program Files¥ABCYABC Kmmn¥English¥Manual.chm</dm:execute> —~ 1 705
</dm:function>
<dm:function> ~— 1706
<dm:name xml:lang="en-US">On-screen Manual</dm:name>~ 1707
<dm:required> ~— 1 708
<dm:KeywordinRegistry key="HKLM¥SOFTWARE¥ABC¥ABC Kmmn" name="manual_path">
B:¥Program FilesYABC¥ABC Kmmn¥English¥Manual.chm
</dm:KeywordinRegistry>—~— 7 709
</dm:required>
<dm:execute>B:¥Program FilesYABCYABC Kmmn¥English¥Manual.chm</dm:execute> ~— 71770
</dm:function>
+ « - ELEMENT <dm:function> FOR ENVIRONMENT WHERE OS IS INSTALLED ON ANY OF C
THROUGH X DRIVES AND ENGLISH IS USED AS DEFAULT LANGUAGE - - -
<dm:function> ~— 1771
<dm:name xml:lang="en-US">On-screen Manual</dm:name>— 17712
<dmirequired>—~— 71713
<dm:KeywordinRegistry key="HKLM¥SOFTWARE¥ABC¥ABC Kmmn" name="manual_path">
Y:¥Program Files¥ABC¥ABC Kmmn¥English¥Manual.chm
<ldm:KeywordIinRegistry>~—17 7714
<ldm:required>
<dm:execute>Y:¥Program Files¥ABCYABC Kmmn¥English¥Manual.chm</dm:execute> ~— 7775
</dm:function>
<dm:functions — 1716
<dm:name xml:lang="en-US">On-screen Manual</dm:name>— 1717717
<dm:required>—— 717718
<dm:KeywordinRegistry key="HKLM¥SOFTWARE¥ABC¥ABC Kmmn" name="manual_path">
Z:¥Program Files¥ABC¥ABC Kmmn¥English¥Manual.chm
</dm:KeywordinRegistry>~ 17719
<ldm:required>
<dm:execute>Z:¥Program FilesYABC¥ABC Kmmn¥English¥Manual.chm</dm:execute> — 7 720
</dm:function>

U.S. Patent Feb. 23,2016 Sheet 19 of 26 US 9,270,845 B2

FIG.18

1 7300
<dm:function> ~— 71721
<dm:name xml:lang="en-US">On-screen Manual</dm:name>—- 1722
<dm:required> ~— 1 723

<dm:KeywordInRegistry key="HKLMYSOFTWARE¥ABC¥ABC Kmmn" name="manual_path">
A'¥Program Files¥ABCY¥ABC Kmmn¥Arabic¥Manual.chm
</dm:KeywordinRegistry>—— 7 724
<[dm:required>
<dm:execute>A:¥Program FilesYABC¥ABC Kmmn¥Arabic¥Manual.chme/dm:execute>~ 1 725
<[dm:function>
+ » « ELEMENT <dm:function> FOR ENVIRONMENT WHERE OS IS INSTALLED ON ANY OF B
THROUGH Y DRIVES AND ARABIC IS USED AS DEFAULT LANGUAGE - - -
<dm:function> ~— 7726
<dm:name xml:lang="en-US">0n-screen Manual</dm:name>—— 71 727
<dm:required> ~— 1 728
<dm:KeywordInRegistry key="HKLMYSOFTWARE¥ABCYABC Kmmn" name="manual_path">
Z:¥Program Files¥ABCY¥ABC Kmmn¥Arabic¥Manual.chm
</dm:KeywordinRegistry> ~— 7 720
<ldm:required>
<dm:execute>Z:¥Program Files¥ABC¥ABC Kmmn¥Arabic¥Manual.chm</dm:execute> ~— 1 730
</dm:function>
<dm:function> ~ 71731
<dm:name xml:lang="en-US">On-screen Manual</dm:name>— 1732
<dm:required> ~ 71 733
<dm:KeywordInRegistry key="HKLMYSOFTWARE¥ABC¥ABC Kmmn" name="manual_path">
A'¥Program Files¥ABC¥ABC Kmmn¥Russian¥Manual.chm
</dm:KeywordinRegistry>—~— 7 734
<fdm:required>
<dm:execute>A:¥Program Files¥ABC¥ABC Kmmn¥Russian¥Manual.chme/dm:execute> ~— 1 735
</dm:function>
+ + « ELEMENT <dm:function> FOR ENVIRONMENT WHERE OS IS INSTALLED ON ANY OF B
THROUGH Y DRIVES AND RUSSIAN IS USED AS DEFAULT LANGUAGE - - -
<dm:function> — 71736
<dm:name xml:lang="en-US">0n-screen Manual</dm:name>—— 1 737
<dm:required> ~— 7 738
<dm:KeywordInRegistry key="HKLMYSOFTWARE¥ABCYABC Kmmn" name="manual_path">
Z:¥Program Files¥ABCY¥ABC Kmmn¥Russian¥Manual.chm
</dm:KeywordinRegistry>—~ 1 739
<ldm:required>
<dm:execute>Z:¥Program Files¥ABC¥ABC Kmmn¥Russian¥Manual.chm</dm:execute>—~— 1 740
</dm:function>
</dm:functions>
</dm:deviceManagement>

U.S. Patent Feb. 23, 2016 Sheet 20 of 26

FIG.19

(CONSTRUCT CONTENT TO BE DISPLAYED S1901

ON DEVICE MANAGEMENT SCREEN

CONSTRUCT PRINTER QUEUE BUTTON 51902
¥
CONSTRUCT PRINT SETTNG BUTION _ —S7903
¥
VERIFY 0S LANGUAGE NANUAL |
INSTALLATION STATUS 51904

S1905

HAS 03 "
LANGUAGE MANUAL BEEN

US 9,270,845 B2

INSTALLED?

CONSTRUCT 0S LANGUAGE |
MANUAL DISPLAY BUTTON S$1906
VERIFY ARABIC MANUAL |
INSTALLATION STATUS S1907

51908

HAS NO
ARABIC MANUAL BEEN

INSTALLED?

CONSTRUCT ARABIC |
MANUAL DISPLAY BUTTON 51909

r

VERIFY RUSSIAN MANUAL |
INSTALLATION STATUS S1910

S1911

HAS NO
RUSSIAN MANUAL BEEN

INSTALLED?

CONSTRUCT RUSSIAN |
MANUAL DISPLAY BUTTON 51912

oy

U.S. Patent Feb. 23,2016 Sheet 21 of 26 US 9,270,845 B2

FIG.20

950

<Mxml version="1.0" encoding="utf-8"?>
</dm:deviceManagement xmins:dm="http:/fabc.xcoddmicontrol">
<dm:manufacturer>ABC</dm:manufacturer> ~—80 1
<dm:model>Kmmn</dm:model> ~—802
<dm:functions>~—803
<dm:function> ~—804
«»+SAME AS DESCRIPTION ILLUSTRATED IN FIG. 8-+
<ldm:function>
<dm:function>-—~- 839
«»+SAME AS DESCRIPTION ILLUSTRATED INFIG. 8-+
<[dm:function>
<dm:function> ~—840
«»+SAME AS DESCRIPTION ILLUSTRATED INFIG. 8-+
<ldm:function>
<dm:function> ~—951
<!~ CASE WHERE IMAGE CAN BE READ BY TWAIN DRIVER VIA USB CONNECTION -->
<dm:name xml:lang="en-US">Image Scan (TWAIN)</dm:name> ~— 952
<dm:required> ~— 953
<dm:KeywordInRegistry key="HKCU¥Software¥ABCYNetwork Utility¥Kmmn" name="active"
option="gqual"></dm:KeywordInRegistry> ~— 954
</dm:required>
<dm:execute>TWAINScan.exe" ABC Kmmn (TWAIN)" /devmng</dm:execute>~—955
</dm:function>
<dm:function> ~956
<!-- CASE WHERE IMAGE CANNOT BE READ BY TWAIN DRIVER VIA USB CONNECTION ->
<dm:name xml:lang="en-US">Image Scan (TWAIN) - Select Device</dm:name>~ 957
<dm:required> ~— 958
<dm:KeywordInRegistry key="HKCU¥Software¥ABC¥Network Utility¥Kmmn" name="active"
option="gqual">0</dm:KeywordinRegistry>—~- 959
<ldm:required>
<tm:execute>TWAINScan.exe" " fdevmng</dm:execute>—~—960
<dm:function>
<dm:function> ~—96'7
<!~ CASE WHERE IMAGE CAN BE READ BY TWAIN DRIVER VIA CONNECTION BY
IHV NATIVE PROTOCOL ->
<tm:name xml:lang="gn-US">Image Scan (TWAIN)</dm:name> ~—— 962
<dm:required> ~— 963
<dm:KeywordinRegistry key="HKCU¥Software¥ABC¥Network Utility¥Kmmn" name="active"
option="greater">0</dm:KeywordinRegistry> ~— 964
<ldm:required>
<tm:execute>TWAINScan.exe" ABC Kmmn (TWAIN) Network” /devmng</dm:execute>—— 965
<Jdm:function>
<dm:functions>
</dm:deviceManagement>

U.S. Patent Feb. 23,2016 Sheet 22 of 26 US 9,270,845 B2

FIG.21

Network Utility X

Device —631
633 ,~632
ABC Kmmn aabbcckmmn08

635 —634
ABC Kmmn aabbcckmmni4

637 ,—636
ABC Opgr aabbccopqr01

[oK |}—638 639~ Cancel |

)
630

U.S. Patent

Feb. 23, 2016 Sheet 23 of 26 US 9,270,845 B2

FIG.22

(NETWORK UTILITY)\'SZZO 1

t

—S2202

VERIFY MONITORING
TARGET DEVICE

52203

IS
DEVICE 1 TO BE
MONITORED?

YES 52204

ACTIVATE POLLING
THREAD FOR DEVICE 1

Y

52205

IS
DEVICE 2 TO BE
MONITORED?

YES —S2206

ACTIVATE POLLING
THREAD FOR DEVICE 2

Y

VERIFY WHETHER EACH DEVICE CONNECTED
TO NETWORK IS MONITORING TARGET DEVICE

IS
DEVICE N TO BE
MONITORED?
YES —S2208

ACTIVATE POLLING
THREAD FOR DEVICE N

Y

HAS
NO PROCESSING

52209

END MESSAGE BEEN
RECEIVED?

U.S. Patent

Feb. 23, 2016 Sheet 24 of 26 US 9,270,845 B2

FIG.23

(POLLING FOR DEVICE N)”32301

VERIFY STATUS |
OF DEVICE N 52302

IS DEVICE NO

N ONLINE?

S2305
YES _52304
INCREMENT VALUE DECREMENT VALUE
OF "active" BY 1 OF "active" BY 1
l< |
WAIT FOR - S2306

PREDETERMINED TIME

U.S. Patent Feb. 23, 2016

Sheet 25 of 26

US 9,270,845 B2

CONSTRUCT CONTENT TO BE DISPLAYED
(ON DEVICE MANAGEMENT SCREEN }32401

| CONSTRUCTPRINTER QUEUEBUTTON [~S2402

Y

| CONSTRUCT PRINT SETTING BUTTON |—~—52403

I CONNECT SCANNER AND VERIFY INSTALLATION STATUS I’\/82404

52405

HAVE MFP AND
DRIVER BEEN CONNECTED
AND INSTALLED?
YES ,—S2406
[CONSTRUCT IMAGE READING (WIA) BUTTON |

Y
] VERIFY VALUE OF "active" |

52408
NO

B —S2407

DOES "active"

HAVE NO VALUE?

YES —S2409

CONSTRUCT IMAGE READING (l]WAIN)
BUTTON FOR USB CONNECTION

y S2410

YES 82411

DISPLAY SCANNER SELECTION DIALOG AND
CONSTRUCT IMAGE READING _[(TWAINLBUTTON
FOR CONNECTION SELECTED BY USER

A

y S2412
NO

A

active > 07
YES —S2413

CONSTRUCT IMAGE READING ’\lTWAIN)
BUTTON FOR CONNECTION VIA
NETWORK (IHV NATIVE PROTOCOL)

Y
(END >,\,32414

U.S. Patent

Feb. 23, 2016

FIG.25

>~3250 1

ACTIVATE TWAIN
APPLICATION

ACQUIRE INFORMATION
ABOUT DESIGNATED DEVICE

YES

52503

HAS
DEVICE BEEN NO

Sheet 26 of 26

US 9,270,845 B2

—S52502

DESIGNATED?

—52504

GENERATE LIST
OF TWAIN DRIVERS

52509

YES

HAS TWAIN
DRIVER BEEN
EXTRACTED?

—52510

Y —S82505

ACQUIRE ACTIVATION
SOURCE INFORMATION

52506

IS
ACTIVATION
SOURCE DEVICE
MANAGEMENT
SCREEN?

—S2507

ACQUIRE DEFAULT
DEVICE INFORMATION

TEST COMMUNICATION INCLUDED IN OS
S2p11 SET DEVIC*E DFg\d/\:ffO(g
oA e e AR TR P
EXTRACTED? DEVICE INFORMATION
INCLUDED IN OS

NO

v

DISPLAY SCANNER
SELECTION DIALOG

P

—~S2512

-

\

SET DESIGNATED DEVICE
AS DEFAULT DEVICE

—

—~—S82513

-~

Y

DISPLAY TWAIN | _
APPLICATION 52514

US 9,270,845 B2

1
INFORMATION PROCESSING APPARATUS,
INFORMATION PROCESSING METHOD,
AND PROGRAM

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an information processing
apparatus, an information processing method, and a program.

2. Description of the Related Art

Inrecent years, a system including an information process-
ing apparatus and a peripheral apparatus connected thereto
via an interface, such as universal serial bus (USB), Ether-
net®, or wireless local area network (LAN), in which the
peripheral apparatus is controlled by the system, has been
widely and effectively used in environments such as home or
offices. More specifically, a printer, a copying machine, a
facsimile apparatus, a scanner, or a digital camera and an
apparatus having a combination of functions of the above-
described apparatuses and machines are used as a peripheral
apparatus.

To Windows® 7 of Microsoft Corporation, anew function
for managing a peripheral apparatus connected to an infor-
mation processing apparatus, such as a personal computer
(PC), has been introduced. More specifically, Device Stage®
function, which includes a Devices and Printers folder, which
is a window for displaying an apparatus connected to the PC,
and a function for linking to an application or a service
uniquely provided to each peripheral apparatus, has been
introduced to Windows® 7.

A screen of the Devices and Printers folder, which is illus-
trated in FIG. 5A, can be displayed by an operation from the
“start menu” of Windows 7®. Furthermore, a Device Stage
screen (FIG. 5B), which displays information about the status
of each peripheral apparatus, can be displayed by an opera-
tion via the Devices and Printers folder. The Device Stage
screen can provide a visually useful screen. Via the Device
Stage screen, a user is allowed to readily utilize and access a
function and a service related to the apparatus. If a scanner is
used as a peripheral apparatus, a link to an application capable
of reading an image and an image of a document can be
provided on the Device Stage screen. In this case, by launch-
ing and utilizing the application capable of reading an image
and an image of a document, an image or a document image
can be read by using the peripheral apparatus (scanner).

Meanwhile, with the widespread use of the Internet, vari-
ous types of online services have been provided, which
include an information processing apparatus and a peripheral
apparatus connected to the Internet and execute data commu-
nication via the Internet. More specifically, a conventional
online service utilizes the Device Stage screen including a
link to a customer support page of a web site of a manufac-
turer who provides the online service, which is provided on
the Internet. By utilizing the online service like this, a user can
easily access a web site provided related to the apparatus. In
the following description, the Device Stage screen may also
be referred to as a “device management screen”.

A conventional system includes a multifunction printer
(peripheral) (MFP), which has a plurality of functions such as
a printer function, a facsimile transmission function, a scan-
ner function, and a storage function. Conventionally, if a user
desires to read an image or a document image by utilizing the
scanner function of an MFP from an application, the user
generally executes the following operations. More specifi-
cally, the user:

10

15

20

25

30

35

40

45

50

55

60

2

(1-1) launches the application,

(1-2) selects a scanner (driver), which is an input device,
via a scanner selection portion provided to the application,
and

(1-3) executes reading by using the application.

Suppose that a plurality of input devices, such as an MFP or
a scannet, is connected to one PC and that drivers for the input
devices have already been installed on the PC. In this case,
after image reading processing is executed at least once, an
input device that has been selected last is often selected as a
default device to be used when the application is launched the
next time. Japanese Patent Application Laid-Open No. 85132
discusses the above-described conventional method.

When an image of a document set on an MFP is read by
using an application linked on the Device Stage screen, pro-
cessing executed therefor is different from that in a conven-
tional method. To paraphrase this, because the Device Stage
screen is displayed via the Devices and Printers folder, the
following operations are to be executed. More specifically,
the user:

(2-1) opens the Devices and Printers folder,

(2-2) selects a peripheral apparatus to be operated within
the Devices and Printers folder,

(2-3) opens the Device Stage screen for the peripheral
apparatus,

(2-4) launches the application via the Device Stage screen,
and

(2-5) executes reading by using the application.

Suppose that a plurality of input devices, such as an MFP or
a scannet, is connected to one PC and that drivers for the input
devices have already been installed on the PC. In addition,
suppose that image reading processing has been executed at
least once, from the application, by using a specific scanner.
In this state, the scanner is selected as a default device to be
used when the application is launched the next time.

In this state, by using an MFP different from the scanner
and by executing the operations (2-1) through (2-5), suppose
that processing is further executed for reading an image of a
document set on the MFP. If the image reading processing is
executed from the application in the operation (2-5), then the
application executes document image reading processing by
using the scanner that has been set as the default device in the
application, instead of using the MFP. As a result, the image
or the document image desired by the user cannot be read and
the image reading processing may fail.

Suppose that an MFP is connected to one PC via a plurality
of interfaces, such as USB or an Ethernet network. In this
case, the driver of the MFP may vary (i.e., the name of the
driver of the MFP may vary) according to the interface used
for the connection. More specifically, if a TWAIN driver
connected via USB is used as illustrated in FIG. 6B, a driver
name “ABC Kmmn (TWAIN)” is displayed in a scanner
selection field of the application. On the other hand, if a
TWAIN driver connected via a network by using an indepen-
dent hardware vendor (IHV) native protocol is used, a driver
name “ABC Kmmn (TWAIN) Network™ is displayed in a
scanner selection field of the application.

Furthermore, suppose that an MFP is connected to one PC
via two interfaces, i.e., via USB and an Ethernet network. In
this case, the user selects a USB-connected TWAIN driver
“ABC Kmmn (TWAIN)” via a scanner selection field of the
application by executing the operation (1-2) of the operation
of'a conventional method. Then, the user performs the opera-
tion (2-3) to executing reading by the MFP from the applica-
tion via USB connection. When the reading is completed, in
the application, the USB-connected TWAIN driver “ABC

US 9,270,845 B2

3
Kmmn (TWAIN)” is selected as a default device used when
the application is launched the next time.

Moreover, suppose, in this state, that a USB cable used for
the USB connection is taken off from the MFP to cause the
MEFP to be connected to the PC via the Ethernet network only.
Suppose further that an application linked with the Device
Stage screen is launched in this state and that the user executes
reading by the MFP via the Ethernet network by using a
TWAIN driver “ABC Kmmn (TWAIN) Network”, which is
connected via a network by using an IHV native protocol. In
this case, if the reading is executed from the application by
executing the operation (2-5), the application executes the
following operations.

More specifically, the application uses the TWAIN driver
“ABC Kmmn (TWAIN)”, which is connected via USB and
set as the default device within the application, to execute
image reading (document image reading) processing. In other
words, the application does not use the TWAIN driver “ABC
Kmmn (TWAIN) Network™ connected via the network by
using the THV native protocol in this case.

More specifically, the application performs not use the
TWAIN driver “ABC Kmmn (TWAIN) Network™ of the net-
work the connection of the IHV native protocol.

As aresult, an image (document image) desired by the user
to be read cannot be read because the MFP is connected to the
PC not via USB. Accordingly, in this case, the image (docu-
ment image) reading processing may fail.

SUMMARY OF THE INVENTION

According to an aspect of the present invention, an appa-
ratus includes a management unit configured to manage a
device that provides a plurality of functions, and a utilization
unit configured to utilize one function among the plurality of
functions. In the apparatus, the management unit is config-
ured to confirm whether a function different from the one
function, among the plurality of functions, is available
according to management and control data that includes
information for constructing a management screen, which
manages the device and configured to set an argument to an
object indicating a link to the utilization unit according to a
result of the confirmation. In addition, in the apparatus, the
utilization unit is configured, if the object, which is displayed
on the management screen, is designated, to set the device
according to the argument.

Further features and aspects of the present invention will
become apparent from the following detailed description of
exemplary embodiments with reference to the attached draw-
ings.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of the specification, illustrate exemplary
embodiments, features, and aspects of the invention and,
together with the description, serve to explain the principles
of the present invention.

FIG. 1 illustrates an exemplary system configuration of a
peripheral apparatus control system including an information
processing apparatus and a peripheral apparatus.

FIGS. 2A and 2B illustrate an exemplary hardware con-
figuration of a PC and an MFP.

FIG. 3 illustrates an exemplary software configuration of
the PC.

FIG. 4 illustrates an exemplary configuration of a printer
driver of the PC.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIGS. 5A and 5B illustrate an example of a Devices and
Printers folder and a device management screen.

FIGS. 6A through 6D illustrate an example of a Windows
Image Acquisition (WIA) application and a TWAIN applica-
tion.

FIGS. 7A and 7B illustrate an exemplary software configu-
ration of the PC.

FIG. 8 illustrates an example of a content of a device
management and control file.

FIG. 9 illustrates an example of a content of a device
management and control file.

FIG. 10 illustrates an exemplary software configuration of
a device management application and a TWAIN application.

FIG. 11 is a flow chart illustrating an example of processing
executed when a device is connected.

FIG. 12 is a flow chart illustrating an example of processing
for installing a device management and control file.

FIG. 13 is a flow chart illustrating an example of processing
for launching a device management screen.

FIG. 14 is a flow chart illustrating an example of processing
for constructing a content to be displayed on a device man-
agement screen.

FIG. 15 is a flow chart illustrating an example of processing
for launching a TWAIN application.

FIGS. 16 A and 16B illustrate an example of a device man-
agement screen and a manual therefor.

FIG. 17 illustrates an example of a content of a device
management and control file.

FIG. 18 illustrates an example of a content of a device
management and control file.

FIG. 19 is a flow chart illustrating an example of processing
for constructing a content to be displayed on the device man-
agement screen.

FIG. 20 illustrates an example of a content of a device
management and control file.

FIG. 21 illustrates an example of a network utility.

FIG. 22 is a flow chart illustrating an example of processing
executed by using the network utility.

FIG. 23 is a flow chart illustrating an example of processing
for polling a device N.

FIG. 24 is a flow chart illustrating an example of processing
for constructing a content to be displayed on the device man-
agement screen.

FIG. 25 is a flow chart illustrating an example of processing
for launching a TWAIN application.

DESCRIPTION OF THE EMBODIMENTS

Various exemplary embodiments, features, and aspects of
the invention will be described in detail below with reference
to the drawings.

The Windows 7 operating system (OS) mentioned here is
well known and will not be described in detail here.

In addition, in the following description, a term “USB”
refers to a universal serial bus. USB is well known and will
not be described in detail here.

Furthermore, a term “WSD” is an abbreviation of “web
service on devices”. WSD is well known and will not be
described in detail here.

In addition, in the following description, a term “WIA™ is
an abbreviation of “Windows Image Acquisition”. WIA is an
application program interface (API), which is a standard
interface for inputting an image on a Windows® OS from an
image scanner. Accordingly, “WIA” will not be described in
detail here.

Moreover, a term “TWAIN” refers to an interface between
a PC, a scanner, and a digital camera, which are managed as

US 9,270,845 B2

5

a TWAIN Working Group apparatus. TWAIN is well known
and will not be described in detail here.

A first exemplary embodiment of the present invention will
now be described below. FIG. 1 illustrates an exemplary
system configuration of a peripheral apparatus control system
including an information processing apparatus and a periph-
eral apparatus.

Referring to FIG. 1, information processing apparatuses 1
and 2 are general-purpose PCs. The PCs 1 and 2 includes
hardware illustrated in FIG. 2A. In the present invention, it is
supposed that an OS equivalent to Windows® 7 has been
installed on the PCs 1 and 2.

In the example illustrated in FIG. 1, the PC 1 is connected
to a network 4 while the PC 2 is connected to a network 8.
Each of the networks 4 and 8 is an Ethernet® network. A
multifunction printer (hereinafter may also be simply referred
to as an “MFP”) 3 includes a color inkjet printer, a color
facsimile apparatus, a color scanner, and an external storage
device for flash memory. The MFP 3 is an example of a
peripheral apparatus according to the present exemplary
embodiment. The MFP 3 is an MFP manufactured by ABC
Corporation having a model name “Kmmn”. It is useful if a
printer, a copying machine, a facsimile apparatus, a scanner,
and a digital camera and an apparatus having a combination
of functions of the above-described apparatuses (i.e., a mul-
tifunction apparatus) are used as the peripheral apparatus of
the present invention.

The MFP 3 includes hardware that will be described in
detail below with reference to FIG. 2B. The MFP 3 is con-
nected with the PC 1 via a USB interface 14 and the network
4. Thus, the MFP 3 and the PC 1 are in interactive commu-
nication with each other.

An application 80 includes a file having a “.exe” format
(i.e., a file having an extension “.exe”) of Windows. The
application 80 is an example of an application of the present
invention. The application 80 includes a function for display-
ing a device management screen illustrated in FIG. 5B.

In addition, the PC 1 includes an application compliant
with the TWAIN interface. The TWAIN application 142 will
be described in detail below with reference to FIG. 6B. Fur-
thermore, the PC 1 includes a TWAIN driver 141, which will
be described in detail below with reference to FIG. 7B. The
network 4 is a home network for home consumer use, which
is constructed in a house of a user (customer) of the MFP 3.
The MFP 3 is an MFP commonly used among the family of
the user, which is connected to the PC 1 via the network 4
within the user’s house.

The network 8 is an office network constructed within ABC
Corporation. The PC 2, which is connected to the network 8,
includes a web server 9. The web server 9 includes a function
of'a general web server. The web server 9 provides a web site
of ABC Corporation via the Internet.

A compact disc-read only memory (CD-ROM) 10 can be
mounted on the PC 1. The CD-ROM 10 stores software (a
program) and an electronic file. The web server 9 includes a
file storage portion 11 while the CD-ROM 10 includes a file
storage portion 12. A device management and control file
800, which will be described in detail below with reference to
FIGS. 8 and 9, is stored in the file storage portions 11 and 12
of the web server 9 and the CD-ROM 10. The device man-
agement and control file 800 is loaded and transmitted from
the file storage portions 11 and 12. The device management
and control file 800 is an example of device management and
control data.

An analog telephone line 5 is used by the PC 1 for trans-
mitting and receiving a facsimile document via MFP 3. A
flash memory 6 can be mounted into a flash memory insertion

10

15

20

25

30

35

40

45

50

55

60

65

6

slot (not illustrated) of the MFP 3. The flash memory 6 can be
referred to from the PC 1 as a storage device. An MFP 7 is an
MFP different from the MFP 3. The MFP 7 is manufactured
by XYZ Corporation having a model name “Defg”.

FIGS. 2A and 2B illustrate an exemplary hardware con-
figuration of the PC and the MFP according to the present
exemplary embodiment. The PCs 1 and 2 include hardware
illustrated in FIG. 2A. In the present exemplary embodiment,
the hardware configuration of'the PC 1 will be described with
reference to FIG. 2A, representing the hardware configura-
tion of the PCs 1 and 2.

Referring to FIG. 2A, the PC 1 includes a random access
memory (RAM) unit (hereinafter simply referred to as a
“RAM”) 201, a hard disk drive (HDD) 202, a keyboard
(KBD) 203, and a central processing unit (CPU) 204. In
addition, the PC 1 includes a display (a liquid crystal display
(LCD) 205 and a network board (NB) 207. Furthermore, the
PC 1 includes a bus 206. The RAM 201, the HDD 202, the
KBD 203, the CPU 204, the LCD 205, and the NB 207 are in
communication with one another via the bus 206.

The HDD 202 is an example of a storage unit. The KBD
203 is an example of an input unit. The CPU 204 is an
example of a control unit. The LCD 205 is an example of a
display unit. The NB 207 is an example of a communication
control unit. A USB port of the USB interface 14 use is
included in the NB 207. It is also useful if a portable CD-
ROM or a built-in read-only memory (ROM) is used as the
storage unit.

An application, such as the device management application
80 or the TWAIN application 142, and each module (soft-
ware) illustrated in FIGS. 3, 4, 7, and 10 are stored on the
HDD 202 and are loaded and executed by the CPU 204 on the
RAM 201 where necessary. Thus, the CPU 204 implements a
function of the application, such as the device management
application 80 or the TWAIN application 142, and each mod-
ule (software)illustrated in FIGS. 3,4, 7, and 10. The TWAIN
application 142 is an example of a utilization unit. The MFP
3 has the hardware configuration illustrated in FIG. 2B.

In the example illustrated in FIG. 2B, a CPU 15 includes a
microprocessor. The CPU 15, which functions as a central
processing unit of the MFP 3, controls a RAM 17, a commu-
nication unit 18, a recording unit 19, an operation unit 20, a
display unit 21, a reading unit 22, a facsimile control unit 23,
and an external storage control unit 24 according to a program
stored on a ROM 16.

The ROM 16 stores a program used by the MFP 3 for
executing recording (printing) and a program used by the
MFP 3 for executing processing for notitfying information
about the status of print processing to the PC 1 under control
of a printer driver 50. In addition, the ROM 16 stores a
program used by the MFP 3 for transmitting and receiving a
facsimile document under control of a FAX driver (not illus-
trated). Furthermore, the ROM 16 stores a program used by
the MFP 3 for notifying the status of transmission or reception
of facsimile documents to the PC 1 under control of the FAX
driver (not illustrated). Moreover, the ROM 16 stores a pro-
gram used by the MFP 3 for executing image reading pro-
cessing under control of a WIA driver 704 (FIG. 7A) or the
TWAIN driver 141. In addition, the ROM 16 stores a program
used by the MFP 3 for notifying the status of image reading
operations to the PC 1 under control of the WIA driver 704
(FIG.7A) and the TWAIN driver 141.

The RAM 17 temporarily and primarily stores print data,
which is transmitted from the PC 1 and based on which an
image is to be printed by the recording unit 19. In addition, the
RAM. 17 temporarily stores various data, such as image data
read by the reading unit 22, data to be transmitted by fac-

US 9,270,845 B2

7

simile, which has been transmitted from the PC 1, and data
received by facsimile control unit 23 as facsimile data.

The communication unit 18 includes the USB interface 14,
a connection port for connection via the network 4, and a
connection port for connection via the analog telephone line
5. The communication unit 18 controls analog communica-
tion via facsimile. The recording unit 19 includes a recording
unitand an electric circuit. The recording unit of the recording
unit 19 includes an inkjet type recording head, each color ink,
a carriage, and a recording paper conveyance mechanism.
The electric circuit of the recording unit 19 includes an appli-
cation specific integrated circuit (ASIC), which is used for
generating a printing pulse at the recording head based on the
print data.

By executing a printing operation by using an application
capable of executing printing or by executing a facsimile
transmission operation, a content to be displayed (image data)
of'afile opened by the application is temporarily stored on the
HDD 202 of the PC 1 as a spool file of the Enhanced Metafile
(EMF) format. The spool file is then converted by the printer
driver 50 or the FAX driver into print data or into facsimile
transmission data including a command for controlling the
MEFP 3. Furthermore, the print data or the facsimile transmis-
sion data is then transmitted to the MFP 3 via the USB
interface 14 or the network 4.

The print data received by the MFP 3 is converted by the
recording unit 19 into a printing pulse and then is printed on
a recording paper based on the printing pulse. On the other
hand, the facsimile transmission data received by the MFP 3
is converted by facsimile control unit 23 into a facsimile
communication protocol and then is transmitted to a commu-
nication destination facsimile machine via the analog tele-
phone line 5.

The operation unit 20 includes various buttons, such as a
power button or a reset button. The user can execute a job by
using the MFP 3 by operating the operation unit 20. The
display unit 21 includes a touch panel, which includes an
LCD. The display unit 21 can display the status of the MFP 3.
Furthermore, the user can execute various settings via the
display unit 21. In addition, the user can enter, display, and
confirm various settings and the telephone number of a com-
munication destination facsimile apparatus.

The reading unit 22 includes a color image sensor and an
electric circuit including an image processing ASIC. The
reading unit 22 controls the scanner function. Facsimile con-
trol unit 23 includes a FAX modem and an analog communi-
cation circuit. Facsimile control unit 23 controls transmission
and receipt of a facsimile document according to the facsimile
communication protocol.

The external storage control unit 24 includes a flash
memory mounting slot and an interface circuit for storage
device. The external storage control unit 24 controls a flash
memory mounted on the MFP 3.

FIG. 3 illustrates an exemplary software configuration of
the PC. Referring to FIG. 3, the PC 1 includes an Ethernet
control stack 92, an Internet protocol (IP) network control
stack 91, a WSD control stack 90, an IHV native protocol
control stack 89, and an N-PnP control stack 88. The Ethernet
control stack 92 controls Ethernet. The IP network control
stack 91 controls an IP network. The WSD control stack 90
controls WSD. The IHV native protocol control stack 89
controls an IHV-unique protocol. The N-PnP control stack 88
controls Network Plug and Play (hereinafter simply referred
to as “N-PnP”).

Meanwhile, a standard function of Windows® 7 OS “Plug
and Play Extensions (PnP-X)” has been presented as one of
Plug and Play Extension functions for supporting network-

10

15

20

25

30

35

40

45

50

55

60

65

8

connected devices. However, N-PnP is used in the present
exemplary embodiment as a function equivalent to PnP-X.

Device drivers 85 includes standard drivers 87, which are
included in the OS as standards, and IHV-manufactured driv-
ers 86, which are provided by IHVs. An application/device
driver interface (DDI) interface 84 includes an application
programming interface (API) and a DDI. A device manage-
ment application 80 is included in the OS as standard.

A print application 30 is an application capable of execut-
ing printing, which will be described in detail below with
reference to FIG. 4. The TWAIN application 142 complies
with the TWAIN interface. A WIA application 143 complies
with the WIA interface, which will be described in detail later
below with reference to FIG. 6A.

Applications 82 includes the device management applica-
tion 80 and the applications 30, 142, and 143. The device
management application 80 is capable of managing, execut-
ing, and displaying a Device and Printers folder 500 (FIG.
5A) and a device management screen 600 (FIG. 5B) via the
application/DDI interface 84. In the following description,
the Device and Printers folder 500 will be simply referred to
as a “folder” 500.

FIG. 4 illustrates an example of a printer driver included in
the PC. Referring to FIG. 4, the printer driver 50 is a printer
driver for the MFP 3, which is installed on the PC 1. The
printer driver 50 includes a plurality of modules 33 through
36 and 39. The application (print application) 30, which is
capable of executing printing, is equivalent to “Notepad”
(Notepad.exe), which is a text editor included in the OS as
standard.

A graphics device interface (GDI) 31 constitute apart of the
OS. A printer queue 32 is included in the spooler 40 as a part
thereof. The printer queue 32 queues a print job. A queued
print job is displayed in a printer queue folder 107 (FIG. 19).

A print processor 33 changes a print layout and executes
special processing on an image to be printed. A graphics
driver 34, which is a core component of the printer driver for
image processing, executes image processing for printing
according to a drawing command from the GDI 31 and gen-
erates a print control command.

A user interface (UI) module 35 provides and controls a Ul
of' the printer driver. A language monitor 36 is a data commu-
nication interface (I/F) configured to control transmission and
receipt of data. A status monitor 39 displays information
about a status of the MFP 3, such as the ink remaining
amount, an issued warning, and error events.

A port monitor 37 transmits data received from the lan-
guage monitor 36 to an appropriate port. In addition, the port
monitor 37 receives data transmitted from the MFP 3 via a
class driver 38. The class driver 38 is a low level module
provided closest to a port. In the present exemplary embodi-
ment, the class driver 38 is equivalent to a WSD- or IHV-
unique protocol printer class driver. The class driver 38 con-
trols a port (in the present exemplary embodiment, a USB port
or a network port). The printer driver 50 is manufactured by
ABC Corporation, which is the manufacturer of the MFP 3.

FIG. 5 illustrates an example of a Devices and Printers
folder and a device management screen. Referring to FIG.
5A, the Devices and Printers folder 500 is displayed on the PC
1. Furthermore, a printer and a FAX machine that can be
utilized from the PC 1 for each driver are displayed in the
Devices and Printers folder 500. In the present exemplary
embodiment, a device 501, whose name is “XYZ Defg”, and
adevice 503, whose name is “ABC Kmmn”, are displayed in
the Devices and Printers folder 500 as available devices.

A default mark 502 indicates a default device of the system.
In the present exemplary embodiment, the device 501 has

US 9,270,845 B2

9

been set as the default device. In the folder 500, a device icon
of the device 501 is illustrated with dotted lines. This indi-
cates that the device 501 is not currently available. On the
other hand, a device icon of the device 503 is illustrated with
solid lines. This indicates that the device 503 is currently
available.

Referring to FIG. 5B, when the device 503 of the Devices
and Printers folder 500 (FIG. 5A) is selected by the user, the
device management screen 600 is launched and displayed.
The MFP 3 can be managed via the device management
screen 600. In the upper field of the device management
screen 600, a device icon 601, a device name 602, and manu-
facturer information 603 are displayed.

Data of the device icon 601 is stored in apart (area) (not
illustrated) of a device management and control file storage
unit 905 (FIG. 10). The device name 602 displays the device
name of the device 503 displayed in the folder 500. The
manufacturer information 603 displays a text string desig-
nated in an element <dm:manufacturer> 801 (FIG. 8).

On the other hand, in the lower field of the device manage-
ment screen 600, a link to each function associated with the
device 503 is displayed. More specifically, a printer queue
button 604, a print setting button 605, an image reading
(WIA) button 610, and an image reading (TWAIN) button
611 are displayed. In the following description, the image
reading (WIA) button 610 will also be simply referred to as
the “reading (WIA) button 610” while the image reading
(TWAIN) button 611 will also be simply referred to as the
“reading (TWAIN) button 611”. The image reading (TWAIN)
button 611 is an example of an object.

In an element <dm:functions>803 (FIGS. 8 and 9), ele-
ments <dm:function> 804, 839 through 844, each of which
describing each corresponding button and function, are
described. For the image reading (TWAIN) button 611, argu-
ments are set when the TWAIN application 142 is launched
may vary according to the status of connection between the
PC 1 and the MFP 3.

FIGS. 6A through 6C illustrate an example of a WIA
application and a TWAIN application. Referring to FIG. 6A,
the WIA application 143 is included in the OS as standard.
More specifically, the WIA application 143 is software that
operates in interlock with a WIA driver, such as a WIA driver
703 or 704 (FIG. 7A). Furthermore, the WIA application 143
is software capable of reading an image by using the scanner
of the MFP 3.

A scanner selection field 620 is a scanner for reading an
image. The user can select a WIA driver installed on the PC 1
via the scanner selection field 620. In the example illustrated
in FIG. 6A, the WIA driver “ABC Kmmn (WIA)” has been
selected. The user can select a scanner (driver) via a scanner
selection dialog 622 (FIG. 6C). The scanner selection dialog
622 is displayed when the user presses a scanner change
button 624.

FIG. 6C illustrates an example of the scanner selection
dialog 622. Referring to FIG. 6C, the scanner selection dialog
622 includes a scanner selection field 623. The scanner selec-
tion field 623 displays the WIA driver installed on the PC 1.
By selecting a WIA driver, the user can designate a scanner
(driver) to be used for reading an image by using the WIA
application 143.

In the present exemplary embodiment, any of the scanners
(drivers) “ABC Kmmn (WIA)”, “ABC Kmmn WSD (WIA)”,
and “XYZ Defg (WIA)” can be selected. The scanner (driver)
“ABC Kmmn (WIA)” is an alternative for the WIA driver
704, which is allocated to the MFP 3 when the IHV-manu-
factured WIA driver 704, which is manufactured by the
manufacturer of the MFP 3 (in the present exemplary embodi-

10

15

20

25

30

35

40

45

50

55

60

65

10
ment, ABC Corporation) is installed on the MFP 3, if the MFP
3 is connected to the PC 1 via the USB interface 14.

The scanner (driver) “ABC Kmmn WSD (WIA)” is an
alternative for the WIA driver 703, which is allocated to the
MFP 3 when the WIA driver 703, which is included in the OS
as standard, is installed on the MFP 3 if the MFP 3 is con-
nected to the PC 1 via the network 4 by using WSD. On the
other hand, the scanner (driver) “XYZ Defg (WIA)” is an
alternative for the WIA driver 703, which is allocated to the
MFP 7 when the WIA driver 703, which is included in the OS
as standard, is installed on the MFP 7 if the MFP 7 is con-
nected to the PC 1 via the network 4 by using WSD. In the
example illustrated in FIG. 6C, the scanner (driver) “ABC
Kmmn (WIA)” has been selected.

In the example illustrated in FIG. 6B, the TWAIN applica-
tion 142 is a TWAIN application manufactured by ABC Cor-
poration. More specifically, the TWAIN application 142 is
software that operates in interlock with a TWAIN driver, such
as the TWAIN driver 141 (FIG. 7B). Furthermore, the
TWAIN application 142 is software capable of reading an
image by using the scanner of the MFP 3.

Via a scanner selection field 621, the user can select the
TWAIN driver that has been installed on the PC 1 as the
scanner (driver) for reading an image. For the scanner for
reading an image, the user can select any from among the
scanners “ABC Kmmn (TWAIN)”, “ABC Kmmn (TWAIN)
WSD”, and “ABC Kmmn (TWAIN) Network™. The scanner
(driver) “ABC Kmmn (TWAIN)” is an alternative for the
TWAIN driver 141, which is allocated to the MFP 3 when the
TWAIN driver 141, which is manufactured by the manufac-
turer of the MFP 3 (in the present exemplary embodiment,
ABC Corporation) is installed on the MFP 3, if the MFP 3 is
connected to the PC 1 via the USB interface 14.

The scanner (driver) “ABC Kmmn (TWAIN) WSD” is an
alternative for the TWAIN driver 141, which is allocated to
the MFP 3 when the TWAIN driver 141 is installed on the
MFP 3 if the MFP 3 is connected to the PC 1 via the network
4 by using WSD. On the other hand, the scanner (driver)
“ABC Kmmn (TWAIN) Network” is an alternative for the
TWAIN driver 141, which is allocated to the MFP 3 when the
TWAIN driver 141 is installed on the MFP 3 if the MFP 3 is
connected to the PC 1 via the network 4 by using the [HV
native protocol. In the example illustrated in FIG. 6B, the
scanner (driver) “ABC Kmmn (TWAIN)” has been selected.

FIG. 6D illustrates an exemplary scanner selection dialog.
Referring to FIG. 6D, a scanner selection dialog 625 is dis-
played by the TWAIN application 142. TWAIN drivers
installed on the PC 1 is displayed in a scanner selection field
626. The user can designate a scanner (driver) used for read-
ing an image by using the TWAIN application 142 by select-
ing a TWAIN driver via the scanner selection field 626. More
specifically, in the present exemplary embodiment, the user
can select a scanner (driver) from among the following scan-
ners (drivers):

ABC Kmmn (TWAIN)

ABC Kmmn (TWAIN) WSD

ABC Kmmn (TWAIN) Network

The above-described TWAIN drivers are the same as those
described above in relation to the scanner selection field 621.
In the example illustrated in FIG. 6D, the scanner “ABC
Kmmn (TWAIN) Network™ has been selected. When the user
presses an OK button 627, the TWAIN application 142 is
launched in a state where the TWAIN driver that has been
selected via the scanner selection field 626 is designated. If
the name of the TWAIN driver, which is a first argument for
launching the TWAIN application 142, has a value “” (“null”)

US 9,270,845 B2

11

(i.e., if the device is an unknown device), then the TWAIN
application 142 displays the scanner selection dialog 625.

The TWAIN application 142 has a function for designating
the default scanner (driver) and the application launching
source, which are selected when launching the application,
according to the following launching arguments:

First argument: TWAIN driver name
Second argument: application launching source
/devmng: used when launching from
device management screen
/other: used when launching from
source other than
device management screen

[Case 1]

TWAINScan.exe “ABC Kmmn (TWAIN)”/devmng

InCase 1, the TWAIN application 142 is launched from the
device management screen 600 and the MFP 3 reads an image
by using the TWAIN driver 141 via USB connection.

[Case 2]

TWAINScan.exe “ABC Kmmn (TWAIN) WSD”/devmng

In Case 2, the TWAIN application 142 is launched from the
device management screen 600 and the MFP 3 reads an image
by using the TWAIN driver 141 via network by WSD.

[Case 3]

TWAINScan.exe “ABC Kmmn (TWAIN) Network™/
devmng

In Case 3, the TWAIN application 142 is launched from the
device management screen 600 and the MFP 3 reads an image
by using the TWAIN driver 141 via network connection by
the THV native protocol.

[Case 4]

TWAINScan.exe “ABC Kmmn (TWAIN)”/other

In Case 4, the TWAIN application 142 is launched from a
source other than the device management screen and the MFP
3 reads an image by using the TWAIN driver 141 via USB
connection. The only difference point between Cases 1 and 4
is the second argument, which describes the application
launching source. By utilizing the second argument, the
TWAIN application 142 can toggle the processing executed
when and after the launch according to the application
launching source. Therefore, the present exemplary embodi-
ment can improve the user operability. By launching the
TWAIN application 142 to which the first argument has been
added, the user can automatically designate the scanner
(driver) for reading an image without executing any particular
operation, instead of selecting and designating a scanner
(driver) via the scanner selection field 621.

[Case 5]

TWAINScan.exe “”’/devmng

In Case 5, after displaying the scanner selection dialog 625
illustrated in FIG. 6D on the device management screen 600
and after the user has selected a TWAIN driver (the TWAIN
driver 141 in the present exemplary embodiment), the
TWAIN application 142 is launched and the MFP 3 reads an
image by using the TWAIN driver 141, which has been
selected by the user.

FIG. 7 illustrates an exemplary software configuration of
the PC. Referring to FIGS. 7A and 7B, a kernel input/output
(I/O) driver 705 is included in the OS as standard. FIG. 7A
illustrates an exemplary software configuration used for read-
ing an image on the MFP 3 by using the WIA application 143.

Referring to FIG. 7A, the WIA application 143 (FIG. 6A)
is included in the OS as standard. The standard WIA driver
703 is included in the OS as standard. The IHV WIA driver
704 is a driver manufactured by ABC Corporation. A Still

10

15

20

25

30

40

45

50

55

12

Image Architecture (STI)/WIA service 702 is included in the
OS as standard. The STI/WIA service 702 is an interface
between the WIA application 143 and the WIA drivers 703
and 704.

FIG. 7B illustrates an exemplary software configuration
used for reading an image on the MFP 3 by using the TWAIN
application 142. Referring to FIG. 7B, the TWAIN applica-
tion 142 (FIG. 6) is an application manufactured by ABC
Corporation. A TWAIN data source manager 707 is included
in the OS as standard. The TWAIN driver 141 is a driver
manufactured by ABC Corporation. The TWAIN data source
for the MFP 3 is included in the TWAIN driver 141.

FIGS. 8 and 9 illustrate an example of a content of a device
management and control file. Referring to FIG. 8, a device
management and control file 800 is a file used on an English-
based OS. Information illustrated in FIGS. 8 and 9 is stored on
the file storage portions 11 and 12.

In the example illustrated in FIG. 8, the name of the manu-
facturer of the device (the MFP 3), i.e., ABC Corporation, is
set to an element <dm:manufacturer> 801. The model name
of'the device (the MFP 3), i.e., “Kmmn”, is set to an element
<dm:model> 802. The above-described information is uti-
lized in installing the device management and control file
800. The device management and control file 800 also
includes information used to construct the device manage-
ment screen 600.

On the device management screen 600, which is launched
and displayed when the MFP 3 is connected to the PC 1, in
order to display the printer queue button 604 (FIG. 5B), the
print setting button 605 (FIG. 5B), the image reading (WIA)
button 610 (FIG. 5B), and the image reading (T WAIN) button
611 (FIG. 5B), elements <dm:function> 804, 839 through
841, and 842 through 844, which describe each correspond-
ing button and function, are set in an element <dm:functions>
803.

Inan element <dm:name xml:lang="en-US”’>Open Printer
Queue</dm:name>805 included in the element <dm:func-
tion> 804, a text string “Open Printer Queue” is set, which is
displayed on the printer queue button 604. In an element
<dm:execute> open Printer Queue</dm:execute> 806, a code
“open Printer Queue” is set, which describes a function (pro-
gram) for displaying a printer queue folder. Although not
illustrated in the drawing, the printer queue folder includes a
function for displaying the status of a print job.

In an element <dm:name xml:lang="en-US”>Printing
Preferences</dm:name> 807 included in the element <dm:
function> 839, a text string “Printing Preferences” is set,
which is displayed on the print setting button 605. In an
element <dm:execute>printing Preferences</dm:execute>
808, a code “printing Preferences” is set, which describes a
function (program) for displaying a print setting dialog.
Although not illustrated in the drawing, the “print setting
dialog” refers to a print setting screen included in the Ul
module 35 of the printer driver 50.

In an element <dm:namexml:lang="en-US”>Image Scan
(WIA)</dm:name> 809 included in the element <dm:func-
tion> 840, a text string “Image Scan (WIA)” is set, which is
displayed on the reading (WIA) button 610. In an element
<dm:required> 810, information describing a condition for
displaying the image reading (WIA) button 610 is set.

An element <dm:device>scanner</dm:device> 811
describes that the device connected to the PC 1 via the USB
interface 14 or the network 4 using WSD includes a scanner
function that utilizes the WIA driver 704 or the WIA driver
703. An element <dm:available>true</dm:available> 812
describes that the scanner function that utilizes the WIA
driver 704 or the WIA driver 703 is available on the device

US 9,270,845 B2

13

connected to the PC 1 via the USB interface 14 or the network
4 using WSD. More specifically, the condition described by
the element <dm:required> 810 corresponds to a case where
an image can be read via network connection using USB or
WSD by utilizing the WIA driver 704 or 703.

In an element <dm:execute>wiaScan</dm:execute> 813, a
code “wiaScan” is set, which describes a function (program)
for launching the WIA application 143. In an element <dm:
name xml:lang="en-US”>Image Scan (TWAIN) </dm:
name> 814 included in the element <dm:function> 841, a text
string “Image Scan (TWAIN)” is set, which is displayed on
the reading (TWAIN) button 611. In an element <dm:re-
quired> 845, information describing a condition for display-
ing the reading (TWAIN) button 611 is set.

An element <dm:device>storage</dm:device> 815
describes that the device connected to the PC 1 via the USB
interface 14 includes a storage function. An element <dm:
available>true</dm:available> 816 describes that the storage
function of the device connected to the PC 1 via the USB
interface 14 is available.

In determining whether the scanner function of the device
(the MFP 3) connected to the PC 1 is available, the element
<dm:required> 810 is generally utilized. However, in utiliz-
ing the element <dm:required> 810, the Windows® 7 OS
cannot execute auto toggle control. More specifically, the
Windows® 7 OS, in the scanner function utilizing the
TWAIN driver 141, cannot execute auto toggle control by
distinguishing between USB connection and WSD connec-
tion and by executing appropriate control according to the
type of the connection.

Therefore, an appropriate value compliant with each of the
interfaces of the PC 1 and the MFP 3 cannot be set in the
element <dm:required> 810 as an argument used for launch-
ing the TWAIN application 142. Accordingly, the present
exemplary embodiment utilizes the “state where the storage
function is available”, which is a function different from and
not related to the scanner function. The “state where the
storage function is available” is described in the element
<dm:required> 845.

In other words, by determining the scanner function by
identifying the interface between the PC 1 and the device (the
MEFP 3) by utilizing the “state where the storage function is
available”, the present exemplary embodiment enables
appropriate information to be set at the time of launching the
TWAIN application 142 as the argument. Thus, the present
exemplary embodiment can improve the user operability. As
described above, the condition described in the element <dm:
required> 845 corresponds to a case where an image can be
read via USB connection by using the TWAIN driver.

In an element <dm:execute>TWAINScan.exe “ABC
Kmmn (TWAIN)”/devmng</dm:execute> 817, a code
“TWAINScan.exe “ABC Kmmn (TWAIN)”/devmng” is set,
which describes a function (program) for launching the
TWAIN application 142. Thus, when the reading (TWAIN)
button 611 is pressed by the user, the TWAIN application 142
is launched in a state in which the scanner “ABC Kmmn
(TWAIN)”, which indicates the USB-connected TWAIN
driver 141, has been set as the default scanner (driver).
Accordingly, the present exemplary embodiment can achieve
a high user operability.

In an element <dm:name xml:lang="en-US”>Image Scan
(TWAIN) </dm:name> 818 included in the element <dm:
function> 842, a text string “Image Scan (TWAIN)—Select
Device” is set, which is displayed on the reading (TWAIN)
button 611. Because the text string set to the element <dm:
name> is used as the text string displayed on the reading
(TWAIN) button 611, the text string displayed on the reading

5

10

15

20

25

30

35

40

45

50

55

60

65

14

(TWAIN) button 611 may be different from the text string
illustrated in FIG. 5B. Information describing a condition for
displaying the reading (TWAIN) button 611 is set in an ele-
ment <dm:required>846. An element <dm:device>storage</
dm:device> 819 describes that the device connected to the PC
1 via the USB interface 14 includes the storage function.

An element <dm:available>false</dm:available> 820
describes that the storage function of the device connected to
the PC 1 via the USB interface 14 is not currently available.

In order to determine whether the scanner function of the
device (the MFP 3) connected to the PC 1 is not available, the
following elements are generally utilized:

<dm:required>
<dm:device>scanner</dm:device>
<dm:available>false</dm:available>
</dm:required>.

However, in utilizing the element <dm:required>, the Win-
dows® 7 OS cannot execute the following control.

More specifically, the scanner function of the Windows® 7
OS cannot execute auto toggle control for distinguishing
between the USB network connection and the WSD network
connection and for executing appropriate control according
to each type of connection. Therefore, an appropriate value
compliant with each of the interfaces of the PC 1 and the MFP
3 cannot be set in the element <dm:required> as an argument
used for launching the TWAIN application 142.

Accordingly, the present exemplary embodiment utilizes
the “state where the storage function is available”, which is a
function different from and not related to the scanner func-
tion. The “state where the storage function is available” is
described in the element <dm:required> 846. In other words,
by determining the scanner function by identitying the inter-
face between the PC 1 and the device (the MFP 3) by utilizing
the “state where the storage function is not available”, the
present exemplary embodiment enables appropriate informa-
tion to be set at the time of launching the TWAIN application
142 as the argument. Thus, the present exemplary embodi-
ment can improve the user operability.

As described above, the condition described in the element
<dm:required> 846 corresponds to a case where an image
cannot be read via USB connection by using the TWAIN
driver. In other words, the condition described in the element
<dm:required> 846 corresponds to a case where the PC 1 and
the MFP 3 are not mutually connected via the USB interface
14 or the network 4.

In this case, it is useful if the TWAIN application 142 is
launched in a state where the TWAIN application 142, at first,
displays the scanner selection dialog 625 (FIG. 6D) and the
TWAIN driver selected by the user is set in the scanner selec-
tion field 621. Accordingly, the present exemplary embodi-
ment sets information for constructing the reading (TWAIN)
button 611, which is a trigger for displaying the scanner
selection dialog 625 (FIG. 6D).

In an element <dm:execute> TWAINScan.exe “”’/devmng
</dm:execute> 821, a code “ TWAINScan.exe “ABC Kmmn
(TWAIN)” “”/devmng” is set, which describes a function
(program) for launching the TWAIN application 142.
Accordingly, if the reading (TWAIN) button 611 is pressed by
the user, the TWAIN application 142 is launched in the fol-
lowing manner.

More specifically, the TWAIN application 142 is launched
in a state where the scanner selection dialog 625 is displayed
and the TWAIN driver selected by the user is set in the scanner
selection field 621. By executing the above-described pro-

US 9,270,845 B2

15

cessing, the user is enabled to appropriately designate a scan-
ner (driver) desired to be used even when the user has not yet
prepared or set the scanner desired to be used. Accordingly,
the present exemplary embodiment can achieve a high user
operability.

In an element <dm:name xml:lang="en-US”>Image Scan
(TWAIN) </dm:name> 822 included in the element <dm:
function> 843, a text string “Image Scan (TWAIN)” is set,
which is displayed on the reading (TWAIN) button 611. In an
element <dm:required> 847, information describing a condi-
tion for displaying the reading (TWAIN) button 611 is set.

An element <dm:device>printer</dm:device> 823
describes that the device connected to the PC 1 includes the
printer function. An element <dm:available>true</dm:avail-
able> 824 describes that the printer function of the device
connected to the PC 1 is currently available. An element
<dm:port>WSD</dm:port> 825 describes that the port used
for utilizing the printer function of the device is a WSD port.
Inthe present exemplary embodiment, a “WSD port” refers to
aport for network connection that utilizes WSD. The element
<dm:port>WSD</dm:port> 825 is defined as a function
included in the OS as standard.

In determining whether the scanner function of the device
(the MFP 3) connected to the PC 1 is available, the element
<dm:required> 810 is generally utilized. However, in utiliz-
ing the element <dm:required> 810, the Windows® 7 OS
cannot execute auto toggle control. More specifically, the
Windows® 7 OS, in the scanner function utilizing the
TWAIN driver 141, cannot execute auto toggle control by
distinguishing between USB connection and WSD connec-
tion and by executing appropriate control according to the
type of the connection.

Therefore, an appropriate value compliant with each of the
interfaces of the PC 1 and the MFP 3 cannot be set in the
element <dm:required> 810 as an argument used for launch-
ing the TWAIN application 142. Accordingly, the present
exemplary embodiment utilizes the “state where the printer
function is available” and the name of the port for the printer
function, which are functions different from and not related to
the scanner function. The “state where the printer function is
available” and the name of the port for the printer function are
described in the element <dm:required> 847.

In other words, by determining the scanner function by
identifying the interface between the PC 1 and the device (the
MEFP 3) by utilizing the “state where the printer function is
available” and the name of the port for the printer function,
the present exemplary embodiment enables appropriate
information to be set at the time of launching the TWAIN
application 142 as the argument. Thus, the present exemplary
embodiment can improve the user operability. As described
above, the condition described in the element <dm:required>
847 corresponds to a case where an image can be read via
WSD network connection by using the TWAIN driver.

An element <dm:execute>TWAINScan.exe “ABC Kmmn
(TWAIN) WSD”/devmng</dm:execute> 826, a code
“TWAINScan.exe “ABC Kmmn (TWAIN) WSD”/devmng”
is set, which describes a function (program) for launching the
TWAIN application 142.

Accordingly, if the reading (TWAIN) button 611 is pressed
by the user, the TWAIN application 142 is launched in the
following manner. More specifically, the TWAIN application
142 is launched in a state where the scanner “ABC Kmmn
(TWAIN) WSD”, which corresponds to the WSD network-
connected TWAIN driver 141, is set as the default scanner
(driver). Accordingly, the present exemplary embodiment can
achieve a high user operability.

10

15

20

25

30

35

40

45

50

55

60

65

16

In the element <dm:function> 844, in an element <dm:
name xml:lang="en-US”>Image Scan (TWAIN) </dm:
name> 827 included therein, a text string called “Image Scan
(TWAIN)” is set, which is displayed on the reading (TWAIN)
button 611. Information describing a condition for displaying
the reading (TWAIN) button 611 is set in an element <dm:
required> 848.

An element <dm:device>printer</dm:device> 828
describes that the device connected to the PC 1 includes the
printer function. An element <dm:available>true</dm:avail-
able> 829 describes that the printer function of the device
connected to the PC 1 is currently available. In the following
description, an attribute “invert="yes’”” means that the logic
is reversed.

An element <dm:portinvert="yes”>LPT</dm:port> 830
describes that the port used for utilizing the printer function of
the device is not a local printer (LPT) (parallel) port. An
element <dm:portinvert="yes”>COM</dm:port> 831
describes that the port to be used for utilizing the printer
function of the device is not a component object model
(COM) (serial) port.

An element <dm:portinvert="yes”>FILE</dm:port> 832
describes that the port to be used for utilizing the printer
function of the device is not a FILE (file export) port.

An element <dm:portinvert="yes”>IR</dm:port> 833
describes that the port to be used for utilizing the printer
function of the device is not an Infrared Data Association
(IrDA) (infrared ray) port. An eclement <dm:
portinvert="yes”>XPS</dm:port> 834 describes that the port
to be used for utilizing the printer function of the device is not
an eXtended Markup Language (XML) Paper Specification
(XPS) (an XPS file export) port.

An element <dm:portinvert="yes”>BTH</dm:port> 835
describes that the port to be used for utilizing the printer
function of the device is not a Bluetooth port. An element
<dm:portinvert="yes”>USB</dm:port> 836 describes that
the port to be used for utilizing the printer function of the
device is not a USB port. An element <dm:
portinvert="yes”>WSD</dm:port> 837 describes that the
port to be used for utilizing the printer function of the device
is not a WSD port.

In determining whether the scanner function of the device
(the MFP 3) connected to the PC 1 is available, the element
<dm:required> 810 is generally utilized. However, in utiliz-
ing the element <dm:required> 810, the Windows® 7 OS
cannot detect a network connection by an IHV native protocol
by using the scanner function that utilizes the TWAIN driver
141.

In the port name of the network by an IHV native protocol
for the printer function, a media access control (MAC)
address (“ABC_NET_<MAC address>”, for example),
which is variable information that is uniquely provided to
each device, is included. Accordingly, the port is not included
in the OS as standard. Therefore, the port is not defined as a
function standard to the OS.

Therefore, it is difficult to distinguish and determine the
network port of the IHV native protocol by utilizing the
element <dm:port>. As described above, in a state where the
network connection by an IHV native protocol is utilized, if
the element <dm:required> 810 or the element <dm:re-
quired> 847 is utilized, an appropriate value complying with
each of the interfaces for the PC1 and the MFP 3 cannot be set
as the argument to be used at the time of launching the
TWAIN application 142.

Accordingly, the present exemplary embodiment utilizes
the “state where the printer function is available” and the
exclusive OR of the name of the port for the printer function,

US 9,270,845 B2

17

which are functions different from and not related to the
scanner function. The “state where the printer function is
available” and the logically exclusive name of the port for the
printer function are described in the element <dm:required>
848.

In other words, by determining the scanner function by
identifying the interface between the PC 1 and the device (the
MEFP 3) by utilizing the “state where the printer function is
available” and the name of the port for the printer function,
the present exemplary embodiment enables appropriate
information to be set at the time of launching the TWAIN
application 142 as the argument. Thus, the present exemplary
embodiment can improve the user operability. As described
above, the condition described in the element <dm:required>
848 corresponds to a case where an image can be read by
using the TWAIN driver via the network connection that uses
an [HV native protocol.

A code “TWAINScan.exe “ABC Kmmn (TWAIN) Net-
work”/devmng” is set in an element <dm:
execute>TWAINScan.exe “ABC Kmmn (TWAIN) Net-
work”/devmng</dm:execute> 838, which describes a
function (program) for launching the TWAIN application
142. Accordingly, if the reading (TWAIN) button 611 is
pressed by the user, the TWAIN application 142 is launched
in the following manner.

More specifically, the TWAIN application 142 is launched
in a state where the scanner “ABC Kmmn (TWAIN) Net-
work”, which corresponds to the TWAIN driver 141 that is
connected via the network using an IHV native protocol, is set
as the default scanner (driver). Accordingly, the present
exemplary embodiment can achieve a high user operability.

FIG. 10 illustrates an exemplary software configuration of
the device management application and the TWAIN applica-
tion. Referring to FIG. 10, the device management applica-
tion 80 includes a display unit 901, a device management
control unit 902, a link execution unit 903, a device manage-
ment and control file reading unit 904, and a device manage-
ment and control file storage unit 905. The device manage-
ment and control file storage unit 905 stores the device
management and control file 800, which is stored in step
S1405 (FIG. 12).

The TWAIN application 142 includes a launching source
determination unit 906, an application control unit 907, a
default device setting unit 908, a reading control unit 909, and
a status acquisition unit 910. The reading control unit 909 is
amodule configured to execute appropriate image processing
on the image data read by the MFP 3 and transmitted from the
TWAIN driver 141. The display unit 901 is a module config-
ured to monitor the status of the MFP 3 via the TWAIN driver
141 and to acquire a control command that describes the
status of the MFP 3.

The device management screen 600 is launched and dis-
played if the MFP 3 is connected to the PC 1 via the USB
interface 14 or the network 4 or if the user selects the device
displayed in the folder 500 (FIG. 5A). In the present exem-
plary embodiment, the case will be primarily described where
the MFP 3 is connected to the PC 1 via the USB interface 14
or the network 4 and the device management screen 600
illustrated in FIG. 5B is launched and displayed.

FIG.11is a flow chartillustrating an example of processing
executed when the device is connected. A program of the
processing according to the flow chart of FIG. 11 is loaded
and executed by the CPU 204 from the HDD 202 on the RAM
201.

Referring to FIG. 11, in step S1301, the device (the MFP 3)
is connected to the PC (the PC 1) via the USB interface 14 or
the network 4. In step S1302, the PC 1 acquires an identifi-

25

40

45

55

18

cation (ID) of the connected device. In the present exemplary
embodiment, the device ID is described by using a text string,
such as “MFG: ABC; MDL: Kmmn; CLS: PRINTER; CMD:
K4; DES: ABC Kmmn;”. More specifically, the device ID is
adevice ID of the printer function of the MFP 3, which the PC
1 can acquire from the MFP 3 via the USB interface 14 or the
network 4. The device ID includes the following information:

the manufacturer (MFG:): ABC

the model (MDL:): Kmmn

the class (CLS:): PRINTER

the command (CMD:): K4
(* “K4” is a printer control
Command privately used by
ABC Corporation)

the description (DES:): ABC Kmmn

In step S1303, the device management application 80
determines whether the driver (the printer driver 50, the FAX
driver, the WIA driver 703, the WIA driver 704, or the
TWAIN driver 141) has been installed on the PC 1. In the
following description about the flow chart of FIG. 11, the
printer driver 50, the FAX driver, the WIA driver 703, the
WIA driver 704, and the TWAIN driver 141 are collectively
referred to as a “driver”.

If it is determined that the driver has not been installed on
the PC 1 yet (NO in step S1303), then the processing advances
to step S1304. In step S1304, the OS installs the driver. In step
S1305, the OS loads the driver. If the driver is normally
loaded, the device (the MFP 3) is registered in the folder 500
illustrated in FIG. 5A.

In step S1306, the device management application 80
determines whether the device management and control file
800 illustrated in FIGS. 8 and 9 has already been installed on
the PC 1. More specifically, in step S1306, the device man-
agement application 80 determines whether the already
installed device management and control file 800 is compliant
with the driver based on the information about the manufac-
turer (MFG:) and information about the model (MDL:),
which is included in the device ID.

If it is determined that the device management and control
file 800 has notbeen installed yet (NO in step S1306), then the
processing advances to step S1307. In step S1307, the device
management application 80 executes processing for install-
ing the device management and control file 800. The process-
ing for installing the device management and control file 800
will be described in detail below with reference to FIG. 12.

In step S1308, the device management application 80
executes processing for launching a device management
screen illustrated in FIG. 13. In step S1309, the device man-
agement application 80 ends the processing executed when
the device is connected to the PC 1.

On the other hand, if it is determined that the device man-
agement and control file 800 has already been installed on the
PC 1 (YES in step S1306), then the processing advances to
step S1308. On the other hand, if it is determined that the
driver has already been installed (YES in step S1303), then
the processing advances to step S1305.

FIG. 12 is a flow chart illustrating an example of processing
for installing a device management and control file. A pro-
gram of the processing of the flow chart illustrated in FIG. 12
is loaded and executed by the CPU 204 from the HDD 202 on
the RAM 201.

When the processing for installing a device management
and control file in step S1307 illustrated in FIG. 11 is
executed, the processing in the flow chart of FIG. 12 starts.

US 9,270,845 B2

19

Referring to FIG. 12, in step S1401, the device management
application 80 starts the processing for installing device man-
agement and control file.

In step S1402, the device management application 80 con-
firms the device ID of the device (the MFP 3) connected to the
PC 1 viathe USB interface 14 or the network 4. In step S1403,
the device management application 80 searches for a device
management and control file 800 of the device (the MFP 3)
connected to the PC 1 based on the manufacturer (MFG:) and
the model (MDL.:) information included in the device ID.

More specifically, the device management and control file
800 illustrated in FIGS. 8 and 9 includes the manufacturer
(MFG:) (“ABC”) and the model (MDL:) (“Kmmn™), which
correspond to the device (the MFP 3), in the element <dm:
manufacturer> 801 and the element <dm:model> 802.

More specifically, the device management application 80
searches for a device management and control file 800 for the
device (the MFP 3) within the file storage portion 11 of the
web server 9 or the file storage portion 12 of the CD-ROM 10
inserted in the PC 1.

In step S1404, the device management application 80
determines whether a device management and control file 800
has been extracted from the file storage portion 11 or the file
storage portion 12. If it is determined that a device manage-
ment and control file 800 has been extracted (YES instep
S1404), then the processing advances to step S1405. In step
S1405, the device management application 80 stores the
device management and control file 800 at a predetermined
location within the HDD 202 of the PC 1.

In step S1406, the device management application 80
installs the device management and control file 800. After the
device management and control file 800 is installed, the pro-
cessing advances to step S1407. In step S1407, the processing
for installing the device management and control file 800 by
the device management application 80 ends. In the present
exemplary embodiment, it is supposed that the device man-
agement and control file 800 compliant with the device (the
MEFP 3) has been extracted and installed.

If no device management and control file 800 has been
extracted (NO in step S1404), then the processing advances to
step S1407. In step S1407, the processing for installing the
device management and control file 800 by the device man-
agement application 80 ends.

FIG. 13 is a flow chartillustrating an example of processing
for launching a device management screen. A program of the
processing according to the flowchart of FIG. 13 is loaded and
executed by the CPU 204 from the HDD 202 on the RAM
201.

When the processing for launching a device management
screen in step S1308 illustrated in FIG. 11 is executed, the
processing in the flow chart of FIG. 13 starts. Referring to
FIG. 13, in step S1501, the device management application
80 starts processing for launching the device management
screen. In addition, when the user selects the device 503
within the folder 500, the device management application 80
starts the processing for launching the device management
screen.

In step S1502, the device management control unit 902
acquires the device name selected via the folder 500. More
specifically, in the present exemplary embodiment, the device
management control unit 902 acquires the device name “ABC
Kmmn” because the device 503 has been selected.

In step S1503, the device management and control file
reading unit 904 loads a device management and control file
800 (FIGS. 8 and 9), which has been stored in step S1405
(FIG. 12) based on the acquired device name. In step S1504,
the device management control unit 902 executes processing

10

15

20

25

30

35

40

45

50

55

60

65

20

for constructing a content to be displayed on the device man-
agement screen based on a device management and control
file 800. The processing for constructing a content to be
displayed on the device management screen will be described
in detail below with reference to FIG. 14.

In step S1505, the device management control unit 902
displays the device management screen 600 via the display
unit 901 according to the content to be displayed on the device
management screen, which is constructed in step S1504. In
step S1506, the processing for launching the device manage-
ment screen by the device management application 80 ends.

FIG. 14 is a flow chart illustrating an example of processing
for constructing a content to be displayed on the device man-
agement screen. A program of the processing according to the
flow chart of FIG. 14 is loaded and executed by the CPU 204
from the HDD 202 on the RAM 201.

When the processing for constructing a content to be dis-
played on the device management screen in step S1504 illus-
trated in FIG. 13 is executed, the processing in the flow chart
of FIG. 14 starts. Referring to FIG. 14, in step S1201, the
device management control unit 902 starts the processing for
constructing a content to be displayed on the device manage-
ment screen.

In step S1202, the device management control unit 902
constructs a printer queue button 604 according to the content
of the element <dm:name> 805 (FIG. 8) and the element
<dm:execute> 806 (FIG. 8). Instep S1203, the device man-
agement control unit 902 constructs a print setting button 605
according to the content of the element <dm:name> 807 (FIG.
8) and the element <dm:execute> 808 (FIG. 8).

In step S1204, the device management control unit 902
confirms the status of connection of a scanner and the status of
installation of the corresponding driver according to the con-
tent of the element <dm:device> 811 (FIG. 8) and the element
<dm:available> 812 (FIG. 8). In step S1205, the device man-
agement control unit 902 determines whether a scanner (the
MEFP 3) has been connected and the corresponding driver has
been installed. If it is determined that the MFP 3 has been
connected to the PC 1 via the USB interface 14 and the IHV
WIA driver 704 manufactured by ABC Corporation has been
installed (YES in step S1205), then the processing advances
to step S1206. Furthermore, if it is determined that the MFP 3
has been connected to the PC 1 via the network 4 by using
WSD and that the standard WIA driver 703, whichis included
in the OS as standard, has been installed (YES in step S1205),
then the processing advances to step S1206. In none of the
above cases (NO in step S1205), then the processing advances
to step S1207.

In step S1206, the device management control unit 902
constructs a reading (WIA) button 610 according to the con-
tent of the element <dm:name> 809 (FIG. 8) and the element
<dm:execute> 813 (FIG. 8). The processing in step S1206 is
executed in the case where an image can be read by using the
THV WIA driver 704 or the standard WIA driver 703 via USB
connection or via the network that uses WSD.

In step S1207, the device management control unit 902
confirms the status of connection of a storage function and the
status of installation of the corresponding driver according to
the content of the element <dm:device> 815 (FIG. 8) and the
element <dm:available> 816 (FIG. 8). Alternatively, in step
S1207, the device management control unit 902 confirms the
status of connection of a storage function and the status of
installation of the corresponding driver according to the con-
tent of the element <dm:device> 819 (FIG. 8) and the element
<dm:available> 820 (FIG. 8).

In step S1208, the device management control unit 902
determines whether a storage function has been connected

US 9,270,845 B2

21

and whether the corresponding driver has been installed. If it
is determined that the MFP 3 has been connected to the PC 1
via the USB interface 14 and that a storage class driver, which
is included in the OS as standard, has been installed (YES in
step S1208), then the processing advances to step S1209. On
the other hand, if it is determined that the MFP 3 has been
connected to the PC 1 not via the USB interface 14 and that no
storage class driver has been installed (NO in step S1208),
then the processing advances to step S1210.

In step S1209, the device management control unit 902
constructs a reading (TWAIN) button 611 for USB connec-
tion according to the content of the element <dm:name> 814
(FIG. 8) and the element <dm:execute> 817 (FIG. 8). The
processing in step S1209 is executed in the case where an
image can be read by the TWAIN driver 141 via USB con-
nection.

In step S1210, the device management control unit 902
constructs a reading (TWAIN) button 611 for a connection
method selected by the user via the scanner selection dialog
625 (FIG. 6D) according to the content of the element <dm:
name> 818 (FIG. 8) and the element <dm:execute> 821 (FIG.
8). The processing in step S1210 is executed in the case where
an image cannot be read by the TWAIN driver 141 via USB
connection. More specifically, in this case, the connection
between the PC 1 and the MFP 3 is implemented not via the
USB interface 14 or the network 4.

In this case, it is useful if the TWAIN application 142 is
launched in a state where the TWAIN application 142 has at
first displayed the scanner selection dialog 625 (FIG. 6D) and
where the TWAIN driver selected by the user is set in the
scanner selection field 621. Accordingly, the device manage-
ment control unit 902 constructs a reading (TWAIN) button
611, which is a button for displaying the scanner selection
dialog 625 (FIG. 6D).

In step S1211, the device management control unit 902
confirms the status of connection of a printer and the status of
installation of the corresponding driver according to the con-
tent of the element <dm:device> 823 (FIG. 8), the element
<dm:available> 824 (FIG. 8), and the element <dm:port> 825
(FIG. 8). In step S1212, the device management control unit
902 determines whether a printer has been connected and
whether the corresponding driver has been installed.

Ifitis determined that the MFP 3 has been connected to the
PC 1 via the network 4 by using WSD and that the printer
driver 50 has been installed (YES in step S1212), then the
processing advances to step S1213. On the other hand, if it is
determined that the MFP 3 has been connected to the PC 1 not
via the network 4 by using WSD and that the printer driver 50
has not been installed yet (NO in step S1212), then the pro-
cessing advances to step S1214.

In step S1213, the device management control unit 902
constructs a reading (TWAIN) button 611 for network con-
nection that uses WSD according to the content of the element
<dm:name> 822 (FIG. 8) and the element <dm:execute> 826
(FIG. 8). The processing in step S1213 is executed if an image
can be read by the TWAIN driver 141 via the network con-
nection that uses WSD.

In step S1214, the device management control unit 902
confirms the status of connection of a printer and the status of
installation of the corresponding driver according to the con-
tent of the element <dm:device> 828 (FIG. 9), the element
<dm:available> 829 (FIG. 9), and the elements <dm:port>
830 through 837 (FIG. 9). In step S1215, the device manage-
ment control unit 902 determines whether a printer has been
connected and whether the corresponding driver has been
installed.

10

15

20

25

30

35

40

45

50

55

60

65

22

Ifitis determined that the MFP 3 has been connected to the
PC 1 via the network 4 by using the IHV native protocol and
that the printer driver 50 has been installed (YES in step
S1215), then the processing advances to step S1216. On the
other hand, if it is determined that the MFP 3 has been con-
nected to the PC 1 not via the network 4 by using the IHV
native protocol and that the printer driver 50 has not been
installed yet (NO in step S1215), then the processing
advances to step S1217. In step S1217, the processing for
constructing the content to be displayed on the device man-
agement screen ends.

In step S1216, the device management control unit 902
constructs a reading (TWAIN) button 611 for network con-
nection that uses the IHV native protocol according to the
content of the element <dm:name> 827 (FIG. 9) and the
element <dm:execute> 838 (FIG. 9). The processing in step
S1216 is executed if an image can be read by the TWAIN
driver 141 via the network connection that uses the IHV
native protocol. Then, the processing advances to step S1217.
In step S1217, the processing for constructing the content to
be displayed on the device management screen ends.

FIG. 15 is a flow chart illustrating an example of processing
for launching the TWAIN application. A program of the pro-
cessing of the flow chart illustrated in FIG. 15 is loaded and
executed by the CPU 204 from the HDD 202 on the RAM
201.

When the user presses the reading (TWAIN) button 611 via
the device management screen 600 (i.c., when the user gives
an instruction for starting image reading processing), the
processing according to the flow chart of FIG. 15 starts.
Referring to FIG. 15, in step S1101, the processing for
launching the TWAIN application 142 starts.

More specifically, in step S1101, the device management
control unit 902, which is included in the device management
application 80 illustrated in FIG. 10, transmits the informa-
tion described in the element <dm:execute> 817, 821, 826, or
838 (FIGS. 8 and 9) to the application control unit 907 via the
link execution unit 903. In step S1102, the application control
unit 907 acquires device designation information, which is
described by using the name of the TWAIN driver that is a first
argument. In step S1103, to confirm the name of the TWAIN
driver that is the first argument, the application control unit
907 determines whether device designation information
exists (i.e., whether a device has been designated). If it is
determined that a device has been designated (i.e., that device
designation information exists) (YES in step S1103), then the
processing advances to step S1111. On the other hand, ifit is
determined that no device has been designated (i.e., that no
device designation information exists) (NO in step S1103),
then the processing advances to step S1105.

In the present exemplary embodiment, the device is desig-
nated by using the name of the TWAIN driver that is the first
argument, which is described in the element <dm:execute>
817, 821, 826, or 838 (FIGS. 8 and 9). Accordingly, in this
case, the processing advances from step S1103 to step S1111.
If the TWAIN application 142 has been launched without
setting a first argument, then the processing advances from
step S1103 to step S1105.

In step S1111, the application control unit 907 determines
whether the TWAIN driver name, which is the first argument,
has a value “” (“null”) (i.e., whether the device is an unknown
device). If it is determined that the TWAIN driver name,
which is the first argument, has a value “”* (“null”) (i.e., that
the device is an unknown device) (YES in step S1111), then
the processing advances to step S1112. On the other hand, if
it is determined that the TWAIN driver name does not have a
value “* (“null”) (i.e., that the device is not an unknown

US 9,270,845 B2

23

device) (NO in step S1111), then the processing advances to
step S1104. In step S1112, the application control unit 907
displays the scanner selection dialog 625 (FIG. 6D). When
the user selects a TWAIN driver via the scanner selection field
626 and presses the OK button 627, the application control
unit 907 sets the scanner designated with the name of the
selected TWAIN driver as the first argument. Then, the pro-
cessing advances to step S1104.

In step S1104, the default device setting unit 908 sets the
designated device (i.e., the scanner designated by using the
TWAIN driver name) as the default device for the TWAIN
application 142. Then, the processing advances to step
S1109. In step S1105, the application control unit 907 trans-
mits the information received from the device management
control unit 902 via the link execution unit 903 in step S1101
to the launching source determination unit 906. The informa-
tion transmitted from the application control unit 907 to the
launching source determination unit 906 in step S1105 is the
information described in the element <dm:execute> 817, 821,
826, or 838 illustrated in FIGS. 8 and 9. More specifically, in
step S1105, the launching source determination unit 906
acquires information about the launching source, which is a
second argument.

In step S1106, the launching source determination unit 906
determines whether the launching source is the device man-
agement screen. If it is determined that the launching source
is the device management screen (the device management
screen 600 in the present exemplary embodiment) (YES in
step S1106), then the processing advances to step S1104. On
the other hand, if it is determined that the launching source is
a portion other than the device management screen (NO in
step S1106), then the processing advances to step S1107.

In the present exemplary embodiment, the device manage-
ment screen 600 is designated as the launching source accord-
ing to the second argument (“/devmnb’), which is described
in the element <dm:execute> 817, 821, 826, or 838 illustrated
in FIGS. 8 and 9. Accordingly, in this case, the processing
advances from step S1106 to step S1104. On the other hand,
if it is determined that the TWAIN application 142 has been
launched from a portion other than the device management
screen (NO in step S1106), the processing advances from step
S1106 to step S1104 because “/other” has been designated as
the second argument, which corresponds to the launching
source.

In step S1107, the default device setting unit 908 acquires
information about a default device of the OS via the applica-
tion/DDI interface 84. In the present exemplary embodiment,
the “default device” refers to a device to which the default
mark 502 has been set in the folder 500 illustrated in FIG. SA.
More specifically, in the present exemplary embodiment,
because the device 501 (“XYZ Defg”) has been set as the
default device, the default device setting unit 908 acquires the
device name “XYZ Defg” in step S1107.

In step S1108, the default device setting unit 908 sets the
device (driver) name as the default device of the TWAIN
application 142 according to the default device of the OS
acquired in step S1107. Then the processing advances to step
S1109. In step S1108, if the default device setting unit 908
cannot extract an appropriate device (driver) name from the
default device of the OS acquired in step S1107, then the
default device setting unit 908 sets the device (driver) name
set in a previous launch of the TWAIN application 142 as the
default device.

In step S1109, the application control unit 907 displays the
TWAIN application 142. In step S1110, the processing for
launching the TWAIN application ends. In this case, the
TWAIN application 142 has been launched and displayed in

10

15

20

25

30

35

40

45

50

55

60

65

24

the state in which the default device set in step S1108 is
selected. The information about the default device for the
TWAIN application 142 is stored on a memory of the RAM
201, which is managed by the TWAIN application 30.

Now, a second exemplary embodiment of the present
invention will be described in detail below. FIGS. 16A and
168 illustrate an example of a device management screen and
a manual therefor. In the example illustrated in FIG. 16A,
components similar to those of the first exemplary embodi-
ment described above with reference to FIG. 5B are provided
with the same reference numerals. Accordingly, the descrip-
tion thereof will not be repeated here.

Referring to FIG. 16A, a device management screen 1770
is launched and displayed when the user selects the device
503 via the Devices and Printers folder 500. The user can
manage the MFP 3 via the device management screen 1770.

In the lower portion of the device management screen
1770, a link to the function associated with the device 503 is
displayed. More specifically, a printer queue button 604, a
print setting button 605, and a manual display button 1780 are
displayed.

In an element <dm:functions> 1781 (FIGS. 17 and 18),
elements <dm:function> 804, 839, 1701, 1706, 1711, 1716,
1721, 1726, 1731, and 1736, each of which describing each
corresponding button and function, are described. The
manual display button 1780 is a button for displaying a
manual 1771 (FI1G. 16B), which describes how to operate the
MFP 3. When the user presses the manual display button
1780, the manual 1771, which has been previously installed at
a predetermined location within the PC 1, is launched and
displayed.

Referring to FIG. 16B, the manual 1771 is a manual
describing how to operate the MFP 3. The manual 1771
includes a Compiled Help Module (CHM) file (Manual.chm).
More specifically, the manual 1771, which depends on the
model of the MFP 3 and the language used thereon, is
installed by a dedicated setup application at the following
predetermined location. In addition, the setup application
describes a file path to the installation location of the manual
1771 as the following registry information (text string (Type:
REG_SZ7)).

[Case Where the OS is installed on C Drive And English is Used
as the Language of the OS]
Installation location:
C:¥Program FilestABC¥ABC Kmmn¥English¥Manual.chm
Registry information:
HKEY_LOCAL_MACHINE¥SOFTWARE¥ABCYABC
Kmmn¥
Name Data
manual_path:
C:¥Program FilestABC¥ABC Kmmn¥English¥Manual.chm
[Case Where the OS is installed on E Drive And Japanese is Used
as the Language of the OS]
Installation location:
E:¥Program FilestABC¥ABC Kmmn¥Japanese¥Manual.chm
Registry information:
HKEY_LOCAL_MACHINE¥SOFTWARE¥ABCYABC
Kmmn¥
Name Data
manual_path:
E:¥Program FilestABC¥ABC Kmmn¥Japanese¥Manual.chm
[Case Where the OS is installed on H Drive And Arabic is Used
as the Language of the OS]
Installation location:
H:¥Program FilestABC¥ABC Kmmn¥Arabic¥Manual.chm
Registry information:
HKEY_LOCAL_MACHINE¥SOFTWARE¥ABCYABC
Kmmn¥
Name Data

US 9,270,845 B2

25

-continued

manual_path:
H:¥Program Filest ABC¥ABC Kmmn¥Arabic¥Manual.chm
[Case Where the OS is installed on K Drive And Russian is Used
as the Language of the OS]
Installation location:
K:¥Program Filest ABC¥ABC Kmmn¥Russian¥Manual.chm
Registry information:
HKEY_LOCAL_MACHINE¥SOFTWAREYABC¥ABC
KmmnY
Name Data
manual_path:
K:¥Program Filest ABC¥ABC Kmmn¥Russian¥Manual.chm

Inlaunching the manual 1771 from another application, the
user generally acquires a full path to the manual 1771 based
on the registry information and launches the manual 1771 by
using the full path. In the present exemplary embodiment,
manuals of four language versions, i.e., English, Japanese,
Arabic, and Russian versions, are provided as the manual for
the MFP 3.

FIGS. 17 and 18 illustrate an example of a content of the
device management and control file. Referring to FIG. 17, a
device management and control file 1700 is a file for the OS
whose language is English. Information illustrated in FIGS.
17 and 18 is stored on the file storage portion 11 or the file
storage portion 12. The content of the examples illustrated in
FIG. FIGS. 17 and 18 that is similar to that described above in
the first exemplary embodiment with reference to FIGS. 8 and
9 will not be repeatedly described in detail.

Referring to FIG. 17, information used for constructing the
device management screen 1770 is described in the device
management and control file 1700. On the device manage-
ment screen 1770, which is launched and displayed when the
MEFP 3 is connected to the PC 1, in order to display the buttons
illustrated in FIGS. 16A and 16B (i.e., the printer queue
button 604, the print setting button 605, and the manual
display button 1780), elements <dm:function> 804, 839,
1701,1706,1711,1716,1721,1726,1731, and 1736, each of
which describing each corresponding button and function, are
described in the element <dm:functions> 1781.

In an element <dm:name xml:lang="en-US”>On-screen
Manual</dm:name>1702 included in the element <dm:func-
tion> 1701, a text string “On-screen Manual”, which is dis-
played on the manual display button 1780, is set. In an ele-
ment <dm:required> 1703, information about a condition for
displaying the manual display button 1780 is set.

The element <dm:keyword In Registry> 1704 describes
that the following information has been set as the registry
information:

Registry information:
HKEY__LOCAL_MACHINE¥SOFTWARE¥ABC¥ABC Kmmn¥
Name Data
manual__path:
A¥Program Filest ABC¥FABC Kmmn¥English¥Manual.chm

In the above-described case, the OS is installed on the A drive
and English has been set as the default language of the OS.

In the examples illustrated in FIGS. 17 and 18, “HKLM” is
abbreviation for “HKEY_LOCAL_MACHINE”. The text
string “HKLM” is converted into “HKEY_LOCAL_MA-
CHINE” within the OS to be processed.

If the OS has been installed on the A drive and English is
used as the default language of the OS and if an English
version of the manual 1771 has been installed, then a full path
to the manual 1771 is set in an element <dm:execute> 1705.

10

15

20

25

30

35

40

45

50

55

60

65

26

In an element <dm:name xml:lang="en-US”>On-screen
Manual</dm:name>1707 included in the element <dm:func-
tion> 1706, a text string “On-screen Manual” is set, which is
displayed on the manual display button 1780.

Information about a condition for displaying the manual
display button 1780 is set in an element <dm:required>1708.
An element <dm:keyword In Registry> 1709 describes that
the following information has been set as the registry infor-
mation:

Registry information:

HKEY_ LOCAL_ MACHINE¥SOFTWARE¥ABC¥ABC Kmmn¥
Name Data
manual_ path:

B:¥Program Filest ABC¥ABC Kmmn¥English¥Manual.chm

In the above-described case, the OS is installed on the B drive
and English has been set as the default language of the OS.

If the OS has been installed on the B drive and English is
used as the default language of the OS and if an English
version of the manual 1771 has been installed, then a full path
to the manual 1771 is set in an element <dm:execute> 1710.
For an element <dm:function> in the case where the OS has
been installed on any of C through X drives and English is set
as the default language of the OS, the information about the
OS installation destination drive only is different from that in
the case of the element <dm:function> 1701 and the element
<dm:function>1706. Accordingly, the cases will not be illus-
trated in the drawing.

In an element <dm:name xml:lang="en-US”’>On-screen
Manual</dm:name>1712 included in the element <dm:func-
tion> 1711, a text string “On-screen Manual” is set, which is
displayed on to the manual display button 1780. Information
about a condition for displaying the manual display button
1780 is set in an element <dm:required> 1713.

An element <dm:keyword In Registry> 1714 corresponds
to the case where the following information has been set as
the registry information:

Registry information:
HKEY_LOCAL_MACHINE¥SOFTWARE¥ABCY¥ABC Kmmn¥
Name Data
manual_path:
Y:¥Program Filest ABC¥ABC Kmmn¥English¥Manual.chm

In the above-described case, the OS is installed on the Y drive
and English has been set as the default language of the OS.

If the OS has been installed on the B drive and English is
used as the default language of the OS and if an English
version of the manual 1771 has been installed, then a full path
to the manual 1771 is set in an element <dm:execute> 1715.
In an element <dm:name xml:lang="en-US”>On-screen
Manual</dm:name>1717 included in the element <dm:func-
tion> 1716, a text string “On-screen Manual” is set, which is
displayed on the manual display button 1780.

Information about a condition for displaying the manual
display button 1780 is set in an element <dm:required>1718.
The element <dm:keyword In Registry> 1719 describes that
the following information has been set as the registry infor-
mation:

Registry information:
HKEY_LOCAL_MACHINE¥SOFTWARE¥ABCY¥ABC Kmmn¥
Name Data
manual_path:
Z:¥Program FilestABC¥ABC Kmmn¥English¥Manual.chm

US 9,270,845 B2

27

In the above-described case, the OS is installed on the Z drive
and English has been set as the default language of the OS.

If the OS has been installed on the Z drive and English is
used as the default language of the OS and if an English
version of the manual 1771 has been installed, then a full path
to the manual 1771 is set in an element <dm:execute> 1720.

The OS can be logically installed on any of A through Z
drives. In the present exemplary embodiment, the elements
<dm:function> 1701 through 1716 described above are pro-
vided. Accordingly, if the OS has been installed on an arbi-
trary drive among the A through 7 drives, the manual display
button 1780 can be normally displayed. In addition, when the
user presses the manual display button 1780, the present
exemplary embodiment can normally display the English
manual 1771. Accordingly, the present exemplary embodi-
ment can achieve a high user operability.

In the present exemplary embodiment, it is supposed that
English and Japanese versions are provided for the device
management and control file 1700. In the Japanese version of
the device management and control file 1700, the text string
“English” is substituted with another text string “Japanese”.
More specifically, focusing on the element <dm:function>
1701, the device management and control file 1700 includes
the following content:

<dm:function>

<dm:name xml:lang="en-US”>On-screen Manual</dm:name>
<dm:required>

<dm:keyword In Registry key="HKLM¥SOFTWARE¥ABC¥ABC
Kmmn”

name="manual_path”>

A¥Program Filest ABC¥FABC Kmmn¥Japanese¥Manual.chm
</dm:keyword In Registry>

</dm:required>

<dm:execute>

A¥Program Filest ABC¥FABC Kmmn¥Japanese¥Manual.chm
</dm:execute>

</dm:function>

Accordingly, if the default language of the OS is Japanese
and if the OS has been installed on any arbitrary driver among
the A through Z drives, the present exemplary embodiment
can normally display the manual display button 1780. There-
fore, when the user presses the manual display button 1780,
the present exemplary embodiment can normally display the
Japanese version of the manual 1771. Accordingly, the
present exemplary embodiment can achieve a high user oper-
ability.

If any language other than English and Japanese is used as
the default language of the OS, the device management and
control file 1700 for the other language is not provided.
Accordingly, the English version of the device management
and control file 1700 is installed and referred to by the user as
the device management and control file for the default lan-
guage.

Therefore, if the default language of the OS is Arabic,
whose manual 1771 is available, the manual display button
1780 for displaying the manual 1771 for Arabic or any lan-
guages other than English and Japanese cannot be displayed
according to the elements <dm:function> 1701 through 1716.
In other words, elements <dm:function> 1721 through 1736
(FIG. 18) areto be provided, which are elements dedicated for
languages whose manual 1771 has been provided but whose
device management and control file 1700 has not been pro-
vided.

In an element <dm:name xml:lang="en-US”>On-screen
Manual</dm:name>1722 included in the element <dm:func-
tion> 1721, a text string “On-screen Manual” is set, which is

10

15

20

25

30

35

40

45

50

55

60

65

28

displayed on the manual display button 1780. Information
about a condition for displaying the manual display button
1780 is set in the element <dm:required> 1723.

The element <dm:keyword In Registry> 1724 describes
that the following information has been set as the registry
information:

Registry information:
HKEY_LOCAL_MACHINE¥SOFTWARE¥ABCY¥ABC Kmmn¥
Name Data
manual_path:
A¥Program FilestABC¥ABC Kmmn¥Arabic¥Manual.chm

In the above-described case, the OS is installed on the A drive
and Arabic has been set as the default language of the OS.

If the OS has been installed on the A drive and Arabic is
used as the default language of'the OS and if an Arabic version
of'the manual 1771 has been installed, then a full path to the
manual 1771 is set in the element <dm:execute>1725. For an
element <dm:function> in the case where the OS has been
installed on any of B through Y drives and Arabic is set as the
default language of the OS, the information about the OS
installation destination drive only is different from that in the
case of the element <dm:function> 1721. Accordingly, the
cases will not be illustrated in the drawing.

In an element <dm:name xml:lang="en-US”’>On-screen
Manual</dm:name>1727 included in the element <dm:func-
tion> 1726, a text string “On-screen Manual” is set, which is
displayed on the manual display button 1780. Information
about a condition for displaying the manual display button
1780 is set in the element <dm:required> 1728.

The element <dm:keyword In Registry> 1729 describes
that the following information has been set as the registry
information:

Registry information:
HKEY_LOCAL_MACHINE¥SOFTWARE¥ABCY¥ABC Kmmn¥
Name Data
manual_path:
Z:¥Program FilesFABC¥ABC Kmmn¥Arabic¥Manual.chm

In the above-described case, the OS is installed on the Z drive
and Arabic has been set as the default language of the OS.

If the OS has been installed on the Z drive and Arabic is
used as the default language of'the OS and if an Arabic version
of'the manual 1771 has been installed, then a full path to the
manual 1771 is set in an element <dm:execute> 1730.

In an element <dm:name xml:lang="en-US”’>On-screen
Manual</dm:name>1732 included in the element <dm:func-
tion> 1731, a text string “On-screen Manual” is set, which is
displayed on the manual display button 1780. Information
about a condition for displaying the manual display button
1780 is set in the element <dm:required> 1733.

The element <dm:keyword In Registry> 1734 describes
that the following information has been set as the registry
information:

Registry information:
HKEY_LOCAL_MACHINE¥SOFTWARE¥ABCY¥ABC Kmmn¥
Name Data
manual_path:
A¥Program FilestABC¥ABC Kmmn¥Russian¥Manual.chm

In the above-described case, the OS is installed on the A drive
and Russian has been set as the default language of the OS.

US 9,270,845 B2

29

If the OS has been installed on the A drive and Russian is
used as the default language of the OS and if a Russian version
of'the manual 1771 has been installed, then a full path to the
manual 1771 is set in the element <dm:execute>1735. For an
element <dm:function> in the case where the OS has been
installed on any of B throughY drives and Russian is set as the
default language of the OS, the information about the OS
installation destination drive only is different from that in the
case of the element <dm:function> 1731. Accordingly, the
cases will not be illustrated in the drawing.

In an element <dm:name xml:lang="en-US”>On-screen
Manual</dm:name>1737 included in the element <dm:func-
tion> 1736, a text string “On-screen Manual” is set, which is
displayed on the manual display button 1780. Information
about a condition for displaying the manual display button
1780 is set in an element <dm:required> 1738.

The element <dm:keyword In Registry> 1739 describes
that the following information has been set as the registry
information:

Registry information:
HKEY_LOCAL_MACHINE¥SOFTWARE¥ABCY¥ABC Kmmn¥
Name Data
manual_path:
Z:¥Program FilestABC¥ABC Kmmn¥Russian¥Manual.chm

In the above-described case, the OS is installed on the Z drive
and Russian has been set as the default language of the OS.

If the OS has been installed on the Z drive and Russian is
used as the default language of the OS and if a Russian version
of'the manual 1771 has been installed, then a full path to the
manual 1771 is set in an element <dm:execute> 1740.

As in the case where Arabic or Russian has been set as the
default language in the present exemplary embodiment, the
present exemplary embodiment having the above-described
configuration particularly provides the elements <dm:func-
tion> 1721 through 1736 (FIG. 18), which are elements dedi-
cated for languages whose manual 1771 has been provided
but whose device management and control file 1700 has not
been provided.

Accordingly, if any arbitrarily selected language other than
English and Japanese has been set as the default language of
the OS, the present exemplary embodiment can normally
display the manual display button 1780. Therefore, when the
user presses the manual display button 1780, the present
exemplary embodiment can normally display the appropriate
version of the manual 1771 corresponding to the language
other than English and Japanese. Accordingly, the present
exemplary embodiment can achieve a high user operability.

For the languages other than English and Japanese, the OS
can be logically installed on any of A through Z drives. In the
present exemplary embodiment, the elements <dm:function>
1721 through 1726 and 1731 through 1736 described above
are provided. Accordingly, if the OS has been installed on an
arbitrary drive among the A through Z drives, the manual
display button 1780 can be normally displayed. In addition,
when the user presses the manual display button 1780, the
present exemplary embodiment can normally display the
appropriate version of the manual 1771 corresponding to the
default language of the OS. Accordingly, the present exem-
plary embodiment can achieve a high user operability.

FIG.19is a flow chart illustrating an example of processing
for constructing a content to be displayed on the device man-
agement screen. A program of the processing according to the
flow chart of FIG. 19 is loaded and executed by the CPU 204
from the HDD 202 on the RAM 201.

10

15

20

25

30

35

40

45

50

55

60

65

30

When the processing for constructing a content to be dis-
played on the device management screen in step S1504 illus-
trated in FIG. 13 is executed, the processing in the flow chart
of FIG. 19 starts. Referring to FIG. 19, in step S1901, the
device management control unit 902 starts the processing for
constructing a content to be displayed on the device manage-
ment screen.

In step S1902, the device management control unit 902
constructs a printer queue button 604. In step S1903, the
device management control unit 902 constructs a print setting
button 605. In step S1904, the device management control
unit 902 confirms the status of installation of a manual 1771
for a language that is the same as the default language set for
the OS. In step S1905, the device management control unit
902 determines whether a manual 1771 for a language that is
the same as the default language set for the OS has been
installed. In the example illustrated in FIG. 17, the element
<dm:keyword In Registry> 1704 describes that the OS has
been installed on the A drive.

If it is determined that a manual 1771 for a language that is
the same as the default language set for the OS has been
installed (YES in step S1905), then the processing advances
to step S1906. On the other hand, if it is determined that a
manual 1771 for a language that is the same as the default
language set for the OS has not been installed yet (NO in step
S1905), then the processing advances to step S1907.

In step S1906, the device management control unit 902
constructs a manual display button 1780 for displaying the
manual 1771 for the language that is the same as the default
language of the OS according to the content of the element
<dm:name> 1702 (FIG. 17) and the element <dm:execute>
1705 (FIG. 17). The element <dm:name> 1702 and the ele-
ment <dm:execute> 1705 illustrated in FIG. 17 correspond to
the case where the OS has been installed on the A drive.

In step S1907, the device management control unit 902
confirms the installation status of the Arabic version of the
manual 1771 according to the content of the element <dm:
keyword In Registry> 1724 (FIG. 18). The content of the
element <dm:keyword In Registry> 1724 (FIG. 18) corre-
sponds to the case where the OS has been installed on the A
drive. In step S1908, the device management control unit 902
determines whether the Arabic version of the manual 1771
has been installed. If it is determined that the Arabic version
of the manual 1771 has been installed (YES in step S1908),
then the processing advances to step S1909. On the other
hand, if it is determined that the Arabic version of the manual
1771 has not been installed (NO in step S1908), then the
processing advances to step S1910.

In step S1909, the device management control unit 902
constructs a manual display button 1780 for displaying the
Arabic version of the manual 1771 according to the content of
the element <dm:name> 1722 (FIG. 18) and the element
<dm:execute> 1725 (FIG. 18). The element <dm:name>
1722 and the element <dm:execute> 1725 illustrated in FIG.
18 correspond to the case where the OS has been installed on
the A drive.

In step S1910, the device management control unit 902
confirms the installation status of the Russian version of the
manual 1771 according to the content of the element <dm:
keyword In Registry> 1734 (FIG. 18). The element <dm:
keyword In Registry> 1734 illustrated in FIG. 18 corresponds
to the case where the OS has been installed on the A drive. In
step S1911, the device management control unit 902 deter-
mines whether the Russian version of the manual 1771 has
been installed.

If it is determined that the Russian version of the manual
1771 has been installed (YES in step S1911), then the pro-

US 9,270,845 B2

31

cessing advances to step S1912. On the other hand, if it is
determined that the Russian version of the manual 1771 has
not been installed (NO in step S1911), then the processing
advances to step S1913. In step S1913, the processing for
constructing the content to be displayed on the device man-
agement screen ends.

In step S1912, the device management control unit 902
constructs a manual display button 1780 for displaying the
Russian version of the manual 1771 according to the content
of the element <dm:name> 1732 (FIG. 18) and the element
<dm:execute>1735 (FIG. 18). Then, the processing advances
to step S1913. In step S1913, the processing for constructing
the content to be displayed on the device management screen
ends. The element <dm:name> 1732 and the element <dm:
execute> 1735 illustrated in FIG. 18 correspond to the case
where the OS has been installed on the A drive.

In the above-described first exemplary embodiment, the
MEFP 3, which includes the functions of a color inkjet printer,
a color facsimile apparatus, and a color scanner, and an exter-
nal storage device for a flash memory is used as an example of
a peripheral apparatus. In addition, the above-described first
exemplary embodiment provides a function of an appropriate
device according to the environment of use by the user by
utilizing statuses and port names described in the following
items (1) through (4):

(1) A state in which the storage function, which is different
from and not related to the scanner function, is available

(2) A state in which the storage function, which is different
from and not related to the scanner function, is not available

(3) A state in which the storage function, which is different
from and not related to the scanner function, is available and
the port name of the port used for the printer function

(4) A state in which the storage function, which is different
from and not related to the scanner function, is available and
exclusive OR for the port name of the port used for the printer
function

However, if an MFP that does not include an external
storage device but includes a printer and a scanner only, an
MEFP that does not include a printer but includes a scanner, a
facsimile apparatus, and an external storage device only, or a
single-function color scanner which does not include func-
tions of a printer and an external storage device, is used as an
example of the peripheral apparatus, then the purpose of the
present invention cannot be achieved by the above-described
first exemplary embodiment.

In a third exemplary embodiment of the present invention,
a peripheral apparatus control system including an arbitrary
peripheral apparatus, such as the above-described MFP or a
single-function scanner that can implement the present inven-
tion will be described. In the third exemplary embodiment
described below, it is supposed that the MFP 3 is a single-
function scanner that does not include a printer function or an
external storage device.

FIG. 20 illustrates an example of a device management and
control file. Referring to FIG. 20, a device management and
control file 950 is a file for an English OS. Information illus-
trated in FIG. 20 is stored in the file storage portions 11 and
12. The content of the information illustrated in FIG. 20 that
is the same as that of the information illustrated in FIG. 8 will
not be described in detail here again.

In an element <dm:name xml:lang="en-US”>Image Scan
(TWAIN) </dm:name> 952 included IN an element <dm:
function> 951, a text string “Image Scan (TWAIN)” to be
displayed on the reading (TWAIN) button 611 is set. In an
element <dm:required> 953, information describing a condi-
tion for displaying the reading (TWAIN) button 611 is set. In
an element <dm:keywordInRegistry

20

25

30

40

45

60

32
key="HKCU\Software\ABC\Network Utility\Kmmn”
name="active” option="Equal”></dm:keywordInRegistry>
954, registry information is set as the above-described con-
dition. More specifically, a code “Equal”, which is designated
as an “option” attribute, means “not matching . Accordingly,
if the registry information included in the element <dm:key-
wordInRegistry key="HKCU\Software\ABC\Network
Utility\Kmmn” name="active” option="Equal”></dm:key-
wordInRegistry> 954 does not match the following Registry
information, then the reading (TWAIN) button 611 is dis-
played:

HKEY_CURRENT _USER_MACHINE\Software\ABC\Network
Utility\Kmmn\

Name: active

Type: REG_SZ

Data: none

More specifically, if an arbitrary value, such as “0”, “1”, or
“2”1is set to the apparatus “active”, then the reading (TWAIN)
button 611 is displayed.

In an element<dm:execute>TWAINScan.exe “ABC
Kmmn (TWAIN)”/devmng</dm:execute> 955, a code
“TWAINScan.exe“ABCKmmn(TWAIN)”/devmng”, which
describes the function (program) for launching the TWAIN
application 142 is set. Accordingly, if the reading (TWAIN)
button 611 is pressed by the user, the TWAIN application 142
is launched in a state where the code “ABC Kmmn
(TWAIN)”, which denotes the TWAIN driver 141 used via
USB connection has been set as the default scanner (driver).
Accordingly, the present exemplary embodiment can
improve the user operability.

In an element <dm:name xml:lang="en-US”>Image Scan
(TWAIN)—Select Device</dm:name> 957 included in an
element <dm:function> 956, a text string “Image Scan
(TWAIN)—Select Device” to be displayed on the reading
(TWAIN) button 611 is set. Because the text string set to the
element <dm:name> is used as the text string displayed on the
reading (TWAIN) button 611, the text string displayed on the
reading (TWAIN) button 611 may be different from the text
string illustrated in FIG. 5B.

Information describing a condition for displaying the read-
ing (TWAIN) button 611 is set in an element <dm:required>
958. In an element <dm:keywordInRegistry
key="HKCU¥SoftwarefABC¥Network Utility¥Kmmn”
name="active” option="equal”’>0 </dm:keywordInRegis-
try> 959, registry information is set as the above-described
condition. More specifically, a code “equal”, which is desig-
nated as an “option” attribute, means “matching”. Accord-
ingly, if the registry information included in the element
<dm:keywordInRegistry
key="HKCU¥Software\ABC¥Network Utility¥Kmmn”
name="active” option="equal”’>0 </dm:keywordInRegis-
try> 959 matches the following registry information, then the
reading (TWAIN) button 611 is displayed:

HKEY_CURRENT USER_MACHINE¥Software¥ABC¥Network
Utility¥Kmmn¥

Name: active

Type: REG_SZ

Data: 0

More specifically, if the value “0” is set to the apparatus
“active”, the reading (TWAIN) button 611 is displayed.

In an element <dm:execute>TWAINScan.exe
“”/devmng</dm:execute> 960, the code “TWAINScan.exe

US 9,270,845 B2

33

“”/devmng”, which denotes the function (program) for
launching the TWAIN application 142 is set. Accordingly, if
the reading (TWAIN) button 611 is pressed by the user, the
TWAIN application 142 is launched in the following manner.

More specifically, at first, in a state where the scanner
selection dialog 625 (FIG. 6D) is displayed and the TWAIN
driver selected by the user is set in the scanner selection field
621, the TWAIN application 142 is launched. By executing
the above-described processing, the user is enabled to appro-
priately designate a scanner (driver) desired to be used even
when the user has not yet prepared or set the scanner desired
to be used. Accordingly, the present exemplary embodiment
can achieve a high user operability.

In an element <dm:name xml:lang="en-US”>Image Scan
(TWAIN) </dm:name> 962 included in an element <dm:
function> 961, a text string “Image Scan (TWAIN)” is set to
the reading (TWAIN) button 611. In an element <dm:re-
quired> 963, information describing a condition for display-
ing the reading (TWAIN) button 611 is set.

In an element <dm:keywordInRegistry
key="HKCU¥SoftwarefABC¥Network Utility¥Kmmn”
name="active” option="greater’>0</dm:keywordInRegis-
try> 964, registry information is set as the above-described
condition. In addition, a code “greater”, which is designated
as the “option” attribute, means “greater than . . . ”. Accord-
ingly, if a value greater than the value of the following registry
information is set, the reading (TWAIN) button 611 is dis-
played:

HKEY_CURRENT _USER_MACHINE¥Software¥ABC¥Network
Utility¥Kmmn¥

Name: active

Type: REG_SZ

Data: 0

More specifically, if a value greater than “0” is set to the
apparatus “active”, then the reading (TWAIN) button 611 is
displayed.

In an element <dm:execute>TWAINScan.exe “ABC
Kmmn (TWAIN) Network™/devmng</dm:execute> 965, a
code “TWAINScan.exe” ABC Kmmn (TWAIN) Network™/
devmng”, which describes the function (program) for launch-
ing the TWAIN application 142, is set. Accordingly, if the
reading (TWAIN) button 611 is pressed by the user, the
TWAIN application 142 is launched in the following manner.

More specifically, the TWAIN application 142 is launched
in a state where a code “ABCKmmn (TWAIN) Network”,
which denotes the TWAIN driver 141 used via network con-
nection by IHV native protocol, is set as the default scanner
(driver). Accordingly, the present exemplary embodiment can
improve the user operability.

FIG. 21 illustrates an example of a network utility. Refer-
ring to FIG. 21, a network utility 630, which is software,
periodically executes polling to acquire the status of the
device to monitor a push scan event or a status event from the
device within the network 4, such as the MFP 3. In the
example illustrated in F1G. 21, a main window of the network
utility 630 is displayed.

A short cut for launching the network utility 630 is regis-
tered in a startup folder as one of programs started while
booting the OS. When the OS is booted, the network utility
630 is launched and operates as a resident program. A device
display field 631 displays the device monitored by the net-
work utility 630.

Each of device names 632, 634, and 646 denotes a device
name of the monitoring target device within the network 4.

10

15

20

25

30

35

40

45

50

55

60

65

34

More specifically, the device name 632 of the MFP 3 includes
a MAC address of the MFP 3 “aabbcckmmn08”. The device
name 634 corresponds to an MFP having the same model
name as that of the MFP 3 and a serial number different from
that of the MFP 3. The MFP has a MAC address “aabbcck-
mmnl4”. The device name 636 corresponds to an MFP of
ABC Corporation having the model name “Opqr”. The MFP
has a MAC address “aabbccopqr01”.

If any of monitoring target device check boxes 633, 635,
and 637 has been checked, the network utility 630 monitors
the corresponding device. On the other hand, the network
utility 630 does not monitor a device whose corresponding
monitoring target device check box is not checked.

In the example illustrated in FIG. 21, the network utility
630 monitors the MFP 3, which is displayed as having the
device name “ABC Kmmn aabbcckmmnO8” only. Referring
to FIG. 21, when the user presses an OK button 638, the
network utility 630 stores the setting of each of the monitor-
ing target device check boxes 633, 635, and 637. Further-
more, in this case, the network utility 630 closes its main
window.

When the user presses a cancel button 639, the main win-
dow of the network utility 630 is closed. More specifically, if
the user presses the cancel button 639, the network utility 630
does not store the setting of each of the monitoring target
device check box 633, 635, and 637. Even after the user has
pressed the OK button 638 or the cancel button 639 and thus
the main window is closed, the network utility 630 operates as
a resident program operating on the PC 1 and continues
monitoring the device existing within the network 4.

FIG. 22 is a flow chart illustrating an example of processing
executed by using the network utility. A program of the pro-
cessing illustrated in the flow chart of FIG. 22 is implemented
by the CPU 204 by loading the program from the HDD 202 on
the RAM 201.

When the OS is booted and the function of the shortcut for
launching the network utility 630, which is registered in the
startup folder, is executed, the processing in the flow chart of
FIG. 22 starts. Referring to FIG. 22, in step S2201, the net-
work utility 630 is launched and starts the processing illus-
trated in FIG. 22.

In step S2202, the network utility 630 confirms the moni-
toring target device existing within the network 4 according to
the setting of each of the monitoring target device check
boxes 633, 635, and 637. In step S2203, the network utility
630 determines whether a device 1 (i.e., the device displayed
with the device name 632 in the example illustrated in FIG.
21) is a monitoring target device. If it is determined that the
device 1 is a monitoring target device (YES in step S2203),
then the processing advances to step S2204. On the other
hand, if it is determined that the device 1 is not a monitoring
target device (NO in step S2203), then the processing
advances to step S2205.

In step S2204, the network utility 630 launches a polling
thread for the device 1, which is used for monitoring the
device 1. In step S2205, the network utility 630 determines
whether a device 2 (i.e., a device displayed with the device
name 634 in the example illustrated in FIG. 21) is a monitor-
ing target device. If it is determined that the device 2 is a
monitoring target device (YES in step S2205), then the pro-
cessing advances to step S2206. On the other hand, if it is
determined that the device 2 is not a monitoring target device
(NO in step S2205), then the processing advances to step
S2207.

In step S2206, the network utility 630 launches a polling
thread for the device 2, which is used for monitoring the
device 2. In step S2207, the network utility 630 determines

US 9,270,845 B2

35

whether a device N (i.e., the device displayed with the device
name 636 in the example illustrated in FIG. 21 when N=3) is
a monitoring target device. If it is determined that the device
N is a monitoring target device (YES in step S2207), then the
processing advances to step S2208. On the other hand, if it is
determined that the device N is not a monitoring target device
(NO in step S2207), then the processing advances to step
S2209.

In step S2208, the network utility 630 launches a polling
thread for the device N, which is used for monitoring the
device N. In step S2209, the network utility 630 determines
whether a processing end message has been received from the
OS. Ifit is determined that a processing end message has been
received from the OS (YES in step S2209), then the process-
ing advances to step S2210. In step S2210, the network utility
630 ends all the active polling threads for the active devices
(the devices 1 through N) and ends the processing illustrated
in FIG. 22.

If it is determined that the network utility 630 has not
received a processing end message from the OS yet (NO in
step S2209), then the processing returns to step S2202. When
the network utility 630 launches the polling thread for the
device 1 through N in steps S2204, S2206, and S2208, if the
device polling thread has already been launched and the
device is currently monitored, the network utility 630 does
not launch the device polling thread in an overlapped manner.

FIG. 23 is a flow chart illustrating an example of processing
for polling a device N. The processing illustrated in FIG. 23 is
implemented by the CPU 204 by loading and executing a
corresponding program from the HDD 202 on the RAM 201.

When the network utility 630 has launched the polling
thread for a device N (N is an integer greater than 1) in steps
S2204, S2206, and S2208 illustrated in FIG. 22, the process-
ing illustrated in FIG. 23 starts. Referring to FIG. 23, in step
S2301, the network utility 630 starts the polling for the device
N. In step S2302, the network utility 630 confirms the status
of'the device N. In step S2303, the network utility 630 deter-
mines whether the device N is online. If it is determined that
the device N is online (YES in step S2303), then the process-
ing advances to step S2304. On the other hand, if it is deter-
mined that the device N is not online (i.e., if it is determined
that the device N is offline) (NO in step S2303), then the
processing advances to step S2305.

In step S2304, the network utility 630 increments a value of
the following registry information about the device N (i.e., the
value of the apparatus “active”) by 1 and then the processing
advances to step S2306:

HKEY_CURRENT _USER_MACHINE¥Software¥ABC¥Network
Utility¥<Device Name>¥

Name: active

Type: REG_SZ

In step S2305, the network utility 630 decrements the value
of the registry information (i.e., the value of the apparatus
“active” by 1. Then, the processing advances to step S2306.
For the element <Device Name>, the model name of the
device N is assigned. More specifically, the model name
“Kmmn” is assigned to the element <Device Name> for the
devices 1 and 2. On the other hand, the model name “Opqr” is
assigned to the element <Device Name> for the device 3.

In step S2306, after the network utility 630 has waited for
apredetermined time (in the present exemplary embodiment,
the predetermined wait time of five seconds), then the pro-
cessing returns to step S2302.

20

30

45

50

55

36

As described above, the information that describes the state
of'each of the devices 1 through N as to whether the device is
online (or offline) is assigned to the value of the registry
information (the value of the apparatus “active”). In the
present exemplary embodiment, as a characteristic point of
the present invention, the network utility 630 launches a poll-
ing thread for each device and increments or decrements the
value of the apparatus “active” by 1 in steps S2304 and S2305.

More specifically, if a plurality of devices having the same
model name and different serial numbers exists within the
network 4, the network utility 630 is enabled to flawlessly
monitor the state of all the monitoring target devices existing
within the network 4 by assigning a device name including a
MAC address, such as “Kmmn aabbcckmmnO8” to the ele-
ment <Device Name> included in the registry key of the
registry information instead of simply assigning the model
name.

On the other hand, because the device management and
control file 950 includes previously generated static informa-
tion as illustrated in FIG. 20, it is difficult to describe registry
information by using the model name to which a MAC
address, which is to be identified from among a vast amount
of MAC addresses, is added. In particular, description of the
registry information by using the model name including a
MAC address becomes difficult when a plurality of devices
having the same model name (i.e., the device name such as the
device names 632 and 634 displayed in the device display
field 631) and different serial numbers exists within the net-
work 4.

In this case, although not entirely flawlessly implemented,
the present invention enables substantially correct monitor-
ing of the state of the devices existing within the network 4 by
causing the network utility 630 to launch a polling thread for
each independent device and increments and decrements the
value of the apparatus “active” by 1 in steps S2304 and S2305
in each device polling thread.

Accordingly, in the present exemplary embodiment, the
user is enabled to launch the TWAIN application 142 in the
state where the device desired to be used is selected as the
default scanner (driver) in the scanner selection field 621.
Accordingly, the present exemplary embodiment can achieve
a high user operability.

FIG. 24 is a flow chart illustrating an example of processing
for constructing a content to be displayed on the device man-
agement screen. The processing illustrated in FIG. 24 is
implemented by the CPU 204 by loading and executing a
corresponding program from the HDD 202 on the RAM 201.

When the processing for constructing the content to be
displayed on the device management screen is executed in
step S1504 (FIG. 13), the processing illustrated in the flow
chart of FIG. 24 starts. Referring to FIG. 24, in step S2401, the
device management control unit 902 starts the processing for
constructing the content to be displayed on the device man-
agement screen. In step S2402, the device management con-
trol unit 902 constructs a printer queue button 604 according
to the content of the element <dm:name> 805 (FIG. 8) and the
element <dm:execute> 806 (FIG. 8). In step S2403, the
device management control unit 902 constructs a print setting
button 605 according to the content of the element <dm:
name> 807 (FIG. 8) and the element <dm:execute> 808 (F1G.
8).

In step S2404, the device management control unit 902
confirms the status of connection of a scanner and the status of
installation of the corresponding driver according to the con-
tent of the element <dm:device> 811 (FIG. 8) and the element
<dm:available> 812 (FIG. 8). If it is determined that the MFP
3 has been connected to the PC 1 viathe USB interface 14 and

US 9,270,845 B2

37

that the IHV WIA driver manufactured by the manufacturer
of'the device (i.e., ABC Corporation) has been installed (YES
in step S2405), then the processing advances to step S2406.
Alternatively, if it is determined that the MFP 3 has been
connected to the PC 1 via the network 4 by using the WSD
connection and that the Standard WIA driver 703, which is
included in the OS as a standard function, has been installed
(YES in step S2405), then the processing advances to step
S2406. In a case different from those described above (NO in
step S2405), then the processing advances to step S2407.

In step S2406, the device management control unit 902
constructs a reading (WIA) button 610 according to the con-
tent of the element <dm:name> 809 (FIG. 8) and the element
<dm:execute> 813 (FIG. 8). The processing in step S2406 is
executed in the case where an image can be read by using the
THV WIA driver 704 or the standard WIA driver 703 via USB
connection or via the network that uses WSD.

In step S2407, the device management control unit 902
confirms the value of the registry information (i.e., the value
of the apparatus “active”) according to the content of the
element <dm:keywordInRegistry> 954 (FIG. 20):

HKEY_CURRENT _USER_MACHINE¥Software¥ABC¥Network
Utility¥<Device Name>¥

Name: active

Type: REG_SZ

Ifit is determined that no value has been set to the apparatus
“active” (YES in step S2408), then the processing advances to
step S2409. On the other hand, if it is determined that an
arbitrary value, such as “0”, “1”, or “2”, has been set (NO in
step S2408), then the processing advances to step S2410.

In step S2409, the device management control unit 902
constructs the reading (TWAIN) button 611 for USB connec-
tion according to the content of the element <dm:name> 952
(FIG. 20) and the element <dm:execute> 955 (FIG. 20). In
step S2414, the processing for constructing the content to be
displayed on the device management screen ends. The pro-
cessing in step S2409 is executed in the case where an image
can be read by using the TWAIN driver 141 via USB connec-
tion.

In step S2410, the device management control unit 902
determines whether the value of “active” is “0”. If it is deter-
mined that the value of “active” is “0” (YES in step S2410),
then the processing advances to step S2411. On the other
hand, if it is determined that the value of “active” is not “0”
(NO in step S2410), then the processing advances to step
S2412.

In step S2411, the device management control unit 902
displays the scanner selection dialog 625 (FIG. 6D) according
to the content of the element <dm:name> 957 (FIG. 20) and
the element <dm:execute> 960 (FIG. 20). Furthermore, the
device management control unit 902 constructs the reading
(TWAIN) button 611 for the connection method selected by
the user. Then, the processing advances to step S2414. In step
S2414, the processing for constructing the content to be dis-
played on the device management screen ends.

The processing in step S2411 is executed in the case where
an image cannot be read by the TWAIN driver 141 via USB
connection. More specifically, in this case, the connection
between the PC 1 and the MFP 3 is implemented not via the
USB interface 14 or the network 4.

In this case, it is useful if the TWAIN application 142 is
launched in a state where the TWAIN application 142 has at
first displayed the scanner selection dialog 625 (FIG. 6D) and
where the TWAIN driver selected by the user is set in the

10

15

25

30

35

40

45

50

55

60

65

38

scanner selection field 621. Accordingly, the device manage-
ment control unit 902 constructs the reading (TWAIN) button
611, which is a button for displaying the scanner selection
dialog 625 (FIG. 6D).

In step S2412, the device management control unit 902
determines whether the value of “active” is greater than “0”.
Ifit is determined that the value of “active™ is greater than “0”
(YES in step S2412), then the processing advances to step
S2413. If it is determined that the value of “active” is not
greater than “0” (NO in step S2412), then the processing
advances to step S2414. In step S2414, the processing for
constructing the content to be displayed on the device man-
agement screen ends.

In step S2413, the device management control unit 902
constructs the reading (TWAIN) button 611 for network con-
nection by IHV native protocol according to the element
<dm:name> 962 (FIG. 20) and the element <dm:execute>
965 (FIG. 20). Then, the processing advances to step S2414.
In step S2414, the processing for constructing the content to
be displayed on the device management screen ends. The
processing instep S2413 is executed in the case where an
image can be read by the TWAIN driver 141 via network
connection by IHV native protocol.

With the above-described configuration, the present exem-
plary embodiment can implement a peripheral apparatus con-
trol system configured to provide the function of the device
appropriate in the environment of use by the user by utilizing
the registry information set by the network utility 630 even if
an MFP that does not include an external storage device and
includes a printer and a scanner only, an MFP that does not
include a printer and includes a scanner, a facsimile appara-
tus, and an external storage device only, or a single-function
color scanner that does not include functions of a printer and
an external storage device, is used as an example of the
peripheral apparatus.

In the third exemplary embodiment described above, an
MEFP that does not include an external storage device and
includes a printer and a scanner only, an MFP that does not
include a printer and includes a scanner, a facsimile appara-
tus, and an external storage device only, or a single-function
color scanner that does not include functions of a printer and
an external storage device, is used as an example of the
peripheral apparatus. In addition, the third exemplary
embodiment is capable of providing the function of a device
appropriate in the environment of use by the user by utilizing
the registry information set by the network utility 630.

In a fourth exemplary embodiment of the present inven-
tion, the above-described purpose of the present invention is
achieved by executing a method for automatically identifying
a device desired to be used by the user.

More specifically, in the present exemplary embodiment,
in a case where an image can be read by the TWAIN driver, the
following element <dm:function> is described in the device
management and control file:

<dm:function>

<! -- Case where Image can Be Read by TWAIN Driver -->

<dm:name xml:lang="en-US”>Image Scan (TWAIN) </dm:name>

<dm:execute>TWAINScan.exe “ABC Kmmn (TWAIN)” /devimng
</dm:execute>

</dm:function>

In the present exemplary embodiment, the TWAIN appli-
cation 142 generates a list of TWAIN drivers (scanners) that
includes a text string as the TWAIN driver name, based on
which the model name of the TWAIN driver (scanner) “ABC

US 9,270,845 B2

39

Kmmn (TWAIN)”, which is the first argument, can be iden-
tified, from among all the installed TWAIN drivers (scan-
ners). In addition, the TWAIN application 142 selects an
appropriate TWAIN driver (scanner) from among the TWAIN
drivers (scanners). Furthermore, the TWAIN application 142
sets the selected TWAIN driver (scanner) in the scanner selec-
tion field 621 and launches the set TWAIN driver (scanner).

For a method executed by the TWAIN application 142 for
selecting an appropriate TWAIN driver (scanner) from
among the TWAIN drivers (scanners) included in the gener-
ated list, it is useful if the TWAIN application 142 executes a
communication test on each TWAIN driver (scanner) and
selects a TWAIN driver (scanner) available for normal com-
munication. If no TWAIN driver (scanner) available for nor-
mal communication has been extracted, the TWAIN applica-
tion 142 displays the scanner selection dialog 625 to allow the
user to select a TWAIN driver (scanner).

If a plurality of TWAIN drivers (scanners) available for
normal communication has been extracted, it is useful if the
TWAIN application 142 prioritizes the communication
speed, generates the priority order in order of USB connec-
tion and network connection by IHV native protocol, and
selects a TWAIN driver (scanner) having a high priority order.

Processing according to the present exemplary embodi-
ment will be described in detail below with reference to FIG.
25. FIG. 25 is a flow chart illustrating an example of process-
ing for launching a TWAIN application. A program of the
processing illustrated in the flow chart of FIG. 25 is imple-
mented by the CPU 204 by loading the program from the
HDD 202 on the RAM 201.

Referring to FIG. 25, in step S2501, when the user presses
(designates) the reading (TWAIN) button 611 via the device
management screen 600, the processing for launching the
TWAIN application 142 starts. More specifically, in step
S2501, the device management and control unit 902 included
in the device management application 80 (FIG. 10) transfers
information included in the element “<dm:execute> TWAIN-
Scan.exe “ABCKmmn (TWAIN)”/devmng </dm:execute>"
to the application control unit 907 via the link execution unit
903.

In step S2502, the application control unit 907 acquires
device designation information, which is described by using
the TWAIN driver name that is the first argument, from the
information transferred in step S2501. In step S2503, the
application control unit 907 determines whether a TWAIN
driver name that is the first argument (i.e., device designation
information) is present.

Ifit is determined that a device has been designated (i.e., if
it is determined that device designation information is
present) (YES in step S2503), then the processing advances to
step S2504. On the other hand, if it is determined that no
device has been designated (i.e., if it is determined that no
device designation information is present) (NO in step
S2503), then the processing advances to step S2505.

In the present exemplary embodiment, a device is desig-
nated based on the TWAIN driver name that is the first argu-
ment, which is included in the element “<dm:execute>
TWAINScan.exe “ABCKmmn (TWAIN)”/devmng </dm:ex-
ecute>". Accordingly, in this case, the processing advances
from step S2503 to step S2504. On the other hand, if the
TWAIN application 142 is launched without setting a first
argument (NO in step S2503), then the processing advances
from step S2503 to step S2505.

In step S2504, based on a text string according to which the
model name of the TWAIN driver “ABC Kmmn (TWAIN)”
(or the scanner corresponding to the TWAIN driver) that is the
first argument can be identified, the application control unit

10

15

20

25

30

35

40

45

50

55

60

65

40
907 searches for a TWAIN driver having a TWAIN driver
name including the above-described text string from among
all the installed TWAIN drivers. In addition, in step S2504,
the application control unit 907 generates a list of TWAIN
drivers that satisfy the above-described search condition.

If no TWAIN driver that satisfies the above-described
search condition is extracted, the application control unit 907
generates a list including no TWAIN driver (i.e., a list includ-
ing a null value). In step S2509, the application control unit
907 refers to the content of the list and determines whether
any TWAIN driver has been extracted. If it is determined that
any TWAIN driver has been extracted (YES in step S2509),
then the processing advances to step S2510. On the other
hand, if it is determined that no TWAIN driver has been
extracted (NO in step S2509), then the processing advances to
step S2512.

In step S2510, the application control unit 907 transmits a
predetermined message to each scanner corresponding to
each TWAIN driver. Furthermore, the application control unit
907 executes a communication test based on the content of a
reply transmitted from each TWAIN driver. Furthermore, the
application control unit 907 selects a TWAIN driver available
for normal communication.

If a plurality of scanners available for normal communica-
tion has been extracted, then the application control unit 907
sets a priority order in order of USB connection and a con-
nection via network by IHV native protocol in descending
order of communication speed. In addition, the application
control unit 907 selects a scanner (or a TWAIN driver corre-
sponding to a scanner) having a high priority order.

In step S2511, the application control unit 907 searches for
adevice (scanner) available for normal communication. Ifthe
device (scanner) available for normal communication has
been selected, the application control unit 907 sets the scan-
ner (the TWAIN driver) designated based on the TWAIN
driver name for the selected device (scanner) as the first
argument. Then, the processing advances to step S2513.

On the other hand, if no device (scanner) available for
normal communication has been extracted and if no device
(scanner) has been selected (NO in step S2511), then the
processing advances to step S2512. In step S2512, the appli-
cation control unit 907 displays the scanner selection dialog
625 illustrated in FIG. 6D. More specifically, when the user
selects a TWAIN driver via the scanner selection field 626 and
presses the OK button 627, the application control unit 907
sets the scanner (TWAIN driver) designated based on the
selected TWAIN driver name as the first argument. Then the
processing advances to step S2513. In step S2513, the default
device setting unit 908 sets the designated device (i.e., the
scanner designated by using the TWAIN driver name) as the
default device for the TWAIN application 142. Then, the
processing advances to step S2514.

In step S2505, the application control unit 907 transfers the
information received from the device management and con-
trol unit 902 via the link execution unit 903 in step S2501 to
the launching source determination unit 906. The information
refers to the information described in the element “<dm:
execute>TWAINScan.exe/devmng</dm:execute>", for
which no first argument has been set designated.

The launching source determination unit 906 acquires a
launching source that is a second argument. In step S2506, the
launching source determination unit 906 determines whether
the launching source is the device management screen or a
source other than the device management screen. If it is
determined that the launching source is the device manage-
ment screen (i.e., the device management screen 600 in the
present exemplary embodiment) (YES in step S2506), then

US 9,270,845 B2

41

the processing advances to step S2512. On the other hand, if
it is determined that the launching source is a source other
than the device management screen (NO in step S2506), then
the processing advances to step S2507.

In the present exemplary embodiment, based on the second
argument ‘/devmng” included in the element <dm:
execute>TWAINScan.exe/devmng</dm:execute>, the
device management screen 600 is designated as the launching
source. Accordingly, in this case, the processing advances
from step S2506 to step S2512. On the other hand, if the
TWAIN application 142 has been launched from a source
other than the device management screen 600 (NO in step
S2506), the second argument “/other” has been designated as
the launching source. Accordingly, the processing advances
from step S2506 to step S2507.

In step S2507, the default device setting unit 908 acquires
information about the default device for the OS via the appli-
cation/DDI interface 84. In the present exemplary embodi-
ment, a “default device for the OS” refers to a device to which
a default mark 502 has been assigned in the folder 500 (FIG.
5A). Furthermore, in the present exemplary embodiment,
because the device 501 (XYZ Defg) has been set as the default
device, the default device setting unit 908 acquires the device
N “XYZ Detg” in step S2507.

In step S2508, the default device setting unit 908 sets the
device (driver) name as the device name of the default device
for the TWAIN application 142 based on the default device
for the OS acquired in step S2507. Then, the processing
advances to step S2514. If the default device setting unit 908
does not extract an appropriate device (driver) name by refer-
ring to the default device for the OS acquired in step S2507,
then the default device setting unit 908 executes the following
processing. More specifically, the default device setting unit
908 sets the device (driver) name, which has been set when
the TWAIN application 142 has been launched the last time as
the default device.

In step S2514, the application control unit 907 displays the
TWAIN application 142. In step S2515, the processing for
launching the TWAIN application ends. At this timing, the
launched TWAIN application 142 is currently displayed in a
state where the default device set in step S2513 or S2508 has
been selected.

Furthermore, in the present exemplary embodiment, infor-
mation about the default device for the TWAIN application
142 is stored on a memory area of 201, which is managed by
the TWAIN application 142.

As described above, in the present exemplary embodiment,
an element <dm:execute> for launching the TWAIN applica-
tion 142 is described and included in the device management
and control file by using a text string which enables specifi-
cation of the model name of the TWAIN driver (scanner) as an
argument. In addition, in the present exemplary embodiment,
the TWAIN application 142 selects and launches an appro-
priate TWAIN driver (scanner) based on the text string as
described above. With the above-described configuration, the
present exemplary embodiment can implement a peripheral
apparatus control system configured to provide the function
of'a device appropriate in the environment of use by the user.

The present invention can also be implemented by execut-
ing processing according to a fifth exemplary embodiment of
the present invention. More specifically, the present invention
can also be achieved by providing a system or an apparatus
with a storage medium storing program code of software
implementing the functions of the embodiments and by read-
ing and executing the program code stored in the storage
medium with a computer of the system or the apparatus (a
CPU or a micro processing unit (MPU)).

10

15

20

25

30

35

40

45

50

55

60

65

42

In each of the exemplary embodiments of the present
invention described above, the device management applica-
tion 80 illustrated in FIG. 10 is used as an example of the
application. However, the present invention is not limited to
this. More specifically, an aspect of the present invention can
be effectively implemented by an arbitrary application having
a function similar to the function of each exemplary embodi-
ment of the present invention.

In each exemplary embodiment of the present invention
described above, the TWAIN application 142 illustrated in
FIGS. 6B and 10 is used as an example of the application.
However, the present invention is not limited to this. More
specifically, the present invention can also be effectively
implemented by an arbitrary application having a function
similar to the function of the above-described exemplary
embodiment of the present invention, such as an application
for printing an image (document image).

In addition, in each of the exemplary embodiments of the
present invention described above, a PC isused as an example
of the information processing apparatus. However, the
present invention is not limited to this. More specifically, an
arbitrarily selected information processing apparatus (termi-
nal), which can be used in a manner similar to the manner
described above, such as a digital versatile disc (DVD) player,
a gaming machine, a set-top box, or an Internet appliances,
can also effectively implement the present invention.

Furthermore, in each of the exemplary embodiments of the
present invention described above, an MFP is used as an
example of the peripheral apparatus. However, the present
invention is not limited to this. More specifically, the present
invention can be effectively implemented by using any of a
copying machine, a facsimile apparatus, a scanner, or a digital
camera or an apparatus having a plurality of functions includ-
ing a combination of the functions of the above-described
apparatuses as the peripheral apparatus.

Moreover, in each exemplary embodiment of the present
invention, an OS equivalent to Windows® 7 is used as an
example of the OS. However, the present invention is not
limited to this. More specifically, an arbitrary OS can be used
to implement an aspect of the present invention.

In addition, in each exemplary embodiment of the present
invention, Ethernet is used as an example of the configuration
of'the network 4. However, the present invention is not limited
to this. More specifically, another arbitrary network having a
different configuration can be employed to implement an
aspect of the present invention.

Furthermore, in each exemplary embodiment of the
present invention, Ethernet is used as an example of the inter-
face between the PC 1, and the MFPs 3 and 7. However, the
present invention is not limited to this. More specifically, it is
also useful if a different other arbitrary interface is used to
implement an aspect of the present invention, such as a wire-
less LAN, Institute of Electrical and Electronic Engineers
(IEEE) 1394, Bluetooth, or USB.

In addition, in each of the exemplary embodiments of the
present invention described above, WSD is used as an
example of the protocol used for the web service. However,
the present invention is not limited to this. More specifically,
a different other arbitrary protocol, such as a protocol unique
to an THV, can be used to effectively implement an aspect of
the present invention.

Furthermore, in each exemplary embodiment of the
present invention, when the user presses the reading
(TWAIN) button 611 via the device management screen 600,
the TWAIN application 142 is launched in a state where an
appropriate device (driver) has been set. However, the present
invention is not limited to this. More specifically, it is also

US 9,270,845 B2

43

useful if an appropriate device (driver) name is designated
and an arbitrary application is executed by launching the
arbitrary application via the device management screen,
which includes a link to a specific web site, to provide a
service there.

With the above-described configuration, each exemplary
embodiment of the present invention can provide a device
management screen capable of providing an appropriate dis-
play and function according to the environment of use of the
user. In addition, according to each exemplary embodiment of
the present invention having the above-described configura-
tion, when the user launches an a plurality of to utilize a
function provided by the peripheral apparatus, the user is
allowed to appropriately and securely utilize the function
provided by the peripheral apparatus because the display and
the function of the application is automatically caused to
become optimum according to the environment of use of the
user.

Therefore, with the above-described configuration, each
exemplary embodiment of the present invention can provide
the user with an appropriate function of the device according
to the environment of use of the user.

Furthermore, the present invention is not limited to a spe-
cific exemplary embodiment described above. More specifi-
cally, the present invention can be arbitrarily modified or
altered within the scope of the present invention described in
claims thereof.

While the present invention has been described with refer-
ence to exemplary embodiments, it is to be understood that
the invention is not limited to the disclosed exemplary
embodiments. The scope of the following claims is to be
accorded the broadest interpretation so as to encompass all
modifications, equivalent structures, and functions.

This application claims priority from Japanese Patent
Application No. 2009-201853 filed Sep. 1, 2009, and No.
2009-285354 filed Dec. 16, 2009, which are hereby incorpo-
rated by reference herein in their entirety.

What is claimed is:

1. An information processing apparatus capable of con-
necting with a device, the information processing apparatus
comprising:

a management unit configured to manage the device; and

a network utility configured to monitor a status of the
device,

wherein the management unit displays a management
screen according to control data,

the management unit confirms whether a storage function
of the device is available,

the management unit displays a launching object for which
first information of a TWAIN driver for USB connection
is set in the management screen, according to the control
data, in a case where it is confirmed that the storage
function of the device is available,

a scan application is launched in a state where the TWAIN
driver for USB connection is selected, in a case where
the launching object for which the first information is set
is selected,

the network utility monitors the status of the device, in a
case where it is not confirmed that the storage function of
the device is available,

the management unit displays a launching object, for
which second information of a TWAIN driver for net-
work connection is set, in the management screen,
according to the control data, in a case where the device
is determined to be online by the network utility, and

5

20

25

40

45

50

55

44

a scan application is launched in a state where the TWAIN
driver for network connection is selected, in a case
where the launching object for which the second infor-
mation is set is selected.

2. The information processing apparatus according to
claim 1, wherein the managing unit determines that a storage
function of the device is available, in a case where the device
has been connected to the information processing apparatus
via a USB interface and a storage class driver has been
installed.

3. The information processing apparatus according to
claim 1, wherein the managing unit displays a launching
object, for which information of the TWAIN driver for net-
work connection using an independent hardware vendor
(IHV) native protocol is set as the second information, in the
management screen, according to the control data, in a case
where the device is online and it is not confirmed that the
storage function of the device is available.

4. The information processing apparatus according to
claim 1, wherein the scan application is launched in a state
where a default device of an OS is selected, in a case where the
launching source of the scan application is a portion other
than the management screen.

5. A method executed by an information processing appa-
ratus capable of connecting with a device comprising:

displaying a management screen according to control data;

confirming whether a storage function of the device is
available;

displaying a launching object for which first information of
a TWAIN driver for USB connection is set in the man-
agement screen, according to the control data, in a case
where it is confirmed that the storage function of the
device is available;

launching a scan application in a state where the TWAIN
driver for USB connection is selected, in a case where
the launching object for which the first information is set
is selected;

monitoring a status of the device, in a case where it is not
confirmed that the storage function of the device is avail -
able;

displaying a launching object, for which second informa-
tion of a TWAIN driver for network connection is set, in
the management screen, according to the control data, in
a case where the device is determined to be online; and

launching a scan application in a state where the TWAIN
driver for network connection is selected, in a case
where the launching object for which the second infor-
mation is set is selected.

6. The method according to claim 5, further comprising
determining that a storage function of the device is available,
in a case where the device has been connected to the infor-
mation processing apparatus via a USB interface and a stor-
age class driver has been installed.

7. The method according to claim 5, wherein the managing
screen displays a launching object, for which information of
the TWAIN driver for network connection using an indepen-
dent hardware vendor (IHV) native protocol is set as the
second information, in the management screen, according to
the control data, in a case where the device is online and it is
not confirmed that the storage function of the device is avail-
able.

8. The method according to claim 5, wherein the scan
application is launched in a state where a default device of an
OS is selected, in a case where the launching source of the
scan application is a portion other than the management
screen.

US 9,270,845 B2

45

9. A non-transitory computer readable medium having
computer-executable instructions stored thereon which,
when executed by a computer, cause the computer to function
as an information processing apparatus capable of connecting
with a device, the information processing device executing a
method comprising:

displaying a management screen according to control data;

confirming whether a storage function of the device is

available;

displaying a launching object for which first information of

a TWAIN driver for USB connection is set in the man-
agement screen, according to the control data, in a case
where it is confirmed that the storage function of the
device is available;

launching a scan application in a state where the TWAIN

driver for USB connection is selected, in a case where
the launching object for which the first information is set
is selected;

monitoring a status of the device, in a case where it is not

confirmed that the storage function ofthe device is avail -
able;

displaying a launching object, for which second informa-

tion of a TWAIN driver for network connection is set, in
the management screen, according to the control data, in
a case where the device is determined to be online by a
network utility; and

5

10

15

20

46

launching a scan application in a state where the TWAIN
driver for network connection is selected, in a case
where the launching object for which the second infor-
mation is set is selected.

10. The non-transitory computer readable medium accord-
ing to claim 9, further comprising determining that a storage
function of the device is available, in a case where the device
has been connected to the information processing apparatus
via a USB interface and a storage class driver has been
installed.

11. The non-transitory computer readable medium accord-
ing to claim 9, wherein the managing screen displays a
launching object, for which information of the TWAIN driver
for network connection using an independent hardware ven-
dor (IHV) native protocol is set as the second information, in
the management screen, according to the control data, in a
case where the device is online and it is not confirmed that the
storage function of the device is available.

12. The non-transitory computer readable medium accord-
ing to claim 9, wherein the scan application is launched in a
state where a default device of an OS is selected, in a case
where the launching source of the scan application is a portion
other than the management screen.

#* #* #* #* #*

